Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
J Immunol Methods ; 523: 113584, 2023 12.
Article in English | MEDLINE | ID: mdl-37918618

ABSTRACT

The magnitude and quality of cell-mediated immune responses elicited by natural infection or vaccination are commonly measured by Interferon-É£ (IFN-É£) Enzyme-Linked ImmunoSpot (ELISpot) and Intracellular Cytokine Staining (ICS). To date, laboratories apply a variety of in-house procedures which leads to diverging results, complicates interlaboratory comparisons and hampers vaccine evaluations. During the FLUCOP project, efforts have been made to develop harmonized Standard Operating Procedures (SOPs) for influenza-specific IFN-É£ ELISpot and ICS assays. Exploratory pilot studies provided information about the interlaboratory variation before harmonization efforts were initiated. Here we report the results of two proficiency tests organized to evaluate the impact of the harmonization effort on assay results and the performance of participating FLUCOP partners. The introduction of the IFN-É£ ELISpot SOP reduced variation of both background and stimulated responses. Post-harmonization background responses were all lower than an arbitrary threshold of 50 SFU/million cells. When stimulated with A/California and B/Phuket, a statistically significant reduction in variation (p < 0.0001) was observed and CV values were strongly reduced, from 148% to 77% for A/California and from 126% to 73% for B/Phuket. The harmonizing effect of applying an ICS SOP was also confirmed by an increased homogeneity of data obtained by the individual labs. The application of acceptance criteria on cell viability and background responses further enhanced the data homogeneity. Finally, as the same set of samples was analyzed by both the IFN-É£ ELISpot and the ICS assays, a method comparison was performed. A clear correlation between the two methods was observed, but they cannot be considered interchangeable. In conclusion, proficiency tests show that a limited harmonization effort consisting of the introduction of SOPs and the use of the same in vitro stimulating antigens leads to a reduction of the interlaboratory variation of IFN-É£ ELISpot data and demonstrate that substantial improvements for the ICS assay are achieved as comparable laboratory datasets could be generated. Additional steps to further reduce the interlaboratory variation of ICS data can consist of standardized gating templates and detailed data reporting instructions as well as further efforts to harmonize reagent and instrument use.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Interferon-gamma , Cytokines , Laboratories , Staining and Labeling , Enzyme-Linked Immunospot Assay/methods
2.
Front Immunol ; 13: 982887, 2022.
Article in English | MEDLINE | ID: mdl-36341380

ABSTRACT

Despite the knowledge that cell-mediated immunity (CMI) contributes to the reduction of severe influenza infection, transmission, and disease outcome, the correlates of protection for cell-mediated immunity remain still unclear. Therefore, measuring the magnitude and quality of influenza-specific T cell responses in a harmonized way is of utmost importance to improve characterisation of vaccine-induced immunity across different clinical trials. The present study, conducted as part of the FLUCOP project, describes the development of a consensus protocol for the intracellular cytokine staining (ICS) assay, in order to reduce inter-laboratory variability, and its qualification. In order to develop a consensus protocol, the study was divided into different stages. Firstly, two pilot studies evaluated critical parameters in the analytical (read-outs) and post-analytical (gating strategies and data analysis) methods applied by eight different laboratories within the FLUCOP consortium. The methods were then harmonized by fixing the critical parameters and the subsequent consensus protocol was then qualified by one FLUCOP member. The antigen-specific cell population was defined as polypositive CD4+ T cells (i.e. positive for at least two markers among CD40L/IFNγ/IL2/TNFα), which was shown to be the most sensitive and specific read-out. The qualification of this consensus protocol showed that the quantification of polypositive CD4+ T cells was precise, linear and accurate, and sensitive with a lower limit of quantification of 0.0335% antigen-specific polypositive CD4+ T cells. In conclusion, we provide the description of a harmonized ICS assay, which permits quantitative and qualitative evaluation of influenza vaccine-induced T cell responses. Application of this harmonized assay may allow for future comparisons of T cell responses to different influenza vaccines. It may facilitate future assessments of potential correlates of protection with the promise of application across other pathogens.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Cytokines , T-Lymphocytes , Staining and Labeling , Antigens , CD4-Positive T-Lymphocytes
3.
Front Immunol ; 13: 959379, 2022.
Article in English | MEDLINE | ID: mdl-36052083

ABSTRACT

Influenza vaccines remain the most effective tools to prevent flu and its complications. Trivalent or quadrivalent inactivated influenza vaccines primarily elicit antibodies towards haemagglutinin and neuraminidase. These vaccines fail to induce high protective efficacy, in particular in older adults and immunocompromised individuals and require annual updates to keep up with evolving influenza strains (antigenic drift). Vaccine efficacy declines when there is a mismatch between its content and circulating strains. Current correlates of protection are merely based on serological parameters determined by haemagglutination inhibition or single radial haemolysis assays. However, there is ample evidence showing that these serological correlates of protection can both over- or underestimate the protective efficacy of influenza vaccines. Next-generation universal influenza vaccines that induce cross-reactive cellular immune responses (CD4+ and/or CD8+ T-cell responses) against conserved epitopes may overcome some of the shortcomings of the current inactivated vaccines by eliciting broader protection that lasts for several influenza seasons and potentially enhances pandemic preparedness. Assessment of cellular immune responses in clinical trials that evaluate the immunogenicity of these new generation vaccines is thus of utmost importance. Moreover, studies are needed to examine whether these cross-reactive cellular immune responses can be considered as new or complementary correlates of protection in the evaluation of traditional and next-generation influenza vaccines. An overview of the assays that can be applied to measure cell-mediated immune responses to influenza with their strengths and weaknesses is provided here.


Subject(s)
Influenza Vaccines , Influenza, Human , Aged , Hemagglutinins , Humans , Immunity, Cellular , Influenza, Human/prevention & control , Vaccines, Inactivated
4.
Front Immunol ; 13: 984642, 2022.
Article in English | MEDLINE | ID: mdl-36159843

ABSTRACT

Influenza continues to be the most important cause of viral respiratory disease, despite the availability of vaccines. Today's evaluation of influenza vaccines mainly focuses on the quantitative and functional analyses of antibodies to the surface proteins haemagglutinin (HA) and neuraminidase (NA). However, there is an increasing interest in measuring cellular immune responses targeting not only mutation-prone surface HA and NA but also conserved internal proteins as these are less explored yet potential correlates of protection. To date, laboratories that monitor cellular immune responses use a variety of in-house procedures. This generates diverging results, complicates interlaboratory comparisons, and hampers influenza vaccine evaluation. The European FLUCOP project aims to develop and standardize assays for the assessment of influenza vaccine correlates of protection. This report describes the harmonization and qualification of the influenza-specific interferon-gamma (IFN-γ) Enzyme-Linked ImmunoSpot (ELISpot) assay. Initially, two pilot studies were conducted to identify sources of variability during sample analysis and spot enumeration in order to develop a harmonized Standard Operating Procedure (SOP). Subsequently, an assay qualification study was performed to investigate the linearity, intermediate precision (reproducibility), repeatability, specificity, Lower and Upper Limits of Quantification (LLOQ-ULOQ), Limit of Detection (LOD) and the stability of signal over time. We were able to demonstrate that the FLUCOP harmonized IFN-γ ELISpot assay procedure can accurately enumerate IFN-γ secreting cells in the analytical range of 34.4 Spot Forming Units (SFU) per million cells up to the technical limit of the used reader and in the linear range from 120 000 to 360 000 cells per well, in plates stored up to 6 weeks after development. This IFN-γ ELISpot procedure will hopefully become a useful and reliable tool to investigate influenza-specific cellular immune responses induced by natural infection or vaccination and can be an additional instrument in the search for novel correlates of protection.


Subject(s)
Influenza Vaccines , Influenza, Human , Enzyme-Linked Immunospot Assay/methods , Hemagglutinins , Humans , Immunity, Cellular , Interferon-gamma/metabolism , Membrane Proteins , Neuraminidase , Reproducibility of Results
5.
Vaccine ; 40(8): 1143-1151, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35078666

ABSTRACT

BACKGROUND: As robust dengue-specific CD4+ and CD8+ T cell responses are essential for protective immunity, we assessed cell-mediated immune (CMI) responses to a DENV-2-based dengue tetravalent vaccine candidate (TAK-003) in adolescents living in Panama, a dengue-endemic country. METHODS: Peripheral blood mononuclear cells were collected from a subset of 67 participants ≥ 10 years old included in a phase 2 clinical trial of TAK-003 (Clinicaltrials.gov: NCT02302066). Following stimulation with dengue peptides, the frequency, magnitude, and cross-reactivity of the CD8+ and CD4+ T cell IFN-γ, TNF-α and IL-2 responses were assessed by flow cytometry. RESULTS: Intracellular cytokine staining identified NS1, NS3, and NS5 as the most common non-structural (NS) targets of the CD4+ T-cell response (IFN-γ+); NS3 and NS5 were the main NS targets of the CD8+ T cell response (IFN-γ+). Both CD4+ and CD8+ T-cell responses were multi-functional (IFN-γ + TNF-α + IL-2+) and cross-reactive against DENV-1, -3, and -4 serotypes. Similar responses were seen in all CMI assessments irrespective of participant baseline status for dengue neutralizing antibodies and T cells. CONCLUSIONS: TAK-003 elicited cross-reactive, multi-functional CD4+ and CD8+ T-cell responses, irrespective of dengue pre-exposure.


Subject(s)
Dengue Vaccines , Dengue Virus , Dengue , Adolescent , Antibodies, Neutralizing , Antibodies, Viral , Dengue/prevention & control , Humans , Immunity, Cellular , Leukocytes, Mononuclear , Vaccines, Attenuated , Vaccines, Combined
6.
Front Immunol ; 9: 564, 2018.
Article in English | MEDLINE | ID: mdl-29632533

ABSTRACT

Systems biology has the potential to identify gene signatures associated with vaccine immunogenicity and protective efficacy. The main objective of this study was to identify optimal postvaccination time points for evaluating peripheral blood RNA expression profiles in relation to vaccine immunogenicity and potential efficacy in recipients of the candidate tuberculosis vaccine M72/AS01. In this phase II open-label study (NCT01669096; https://clinicaltrials.gov/), healthy Bacillus Calmette-Guérin-primed, HIV-negative adults were administered two doses (30 days apart) of M72/AS01. Twenty subjects completed the study and 18 subjects received two doses. Blood samples were collected pre-dose 1, pre-dose 2, and 1, 7, 10, 14, 17, and 30 days post-dose 2. RNA expression in whole blood (WB) and peripheral blood mononuclear cells (PBMCs) was quantified using microarray technology. Serum interferon-gamma responses and M72-specific CD4+ T cell responses to vaccination, and the observed safety profile were similar to previous trials. Two different approaches were utilized to analyze the RNA expression data. First, a kinetic analysis of RNA expression changes using blood transcription modules revealed early (1 day post-dose 2) activation of several pathways related to innate immune activation, both in WB and PBMC. Second, using a previously identified gene signature as a classifier, optimal postvaccination time points were identified. Since M72/AS01 efficacy remains to be established, a PBMC-derived gene signature associated with the protective efficacy of a similarly adjuvanted candidate malaria vaccine was used as a proxy for this purpose. This approach was based on the assumption that the AS01 adjuvant used in both studies could induce shared innate immune pathways. Subjects were classified as gene signature positive (GS+) or gene signature negative (GS-). Assignments of subjects to GS+ or GS- groups were confirmed by significant differences in RNA expression of the gene signature genes in PBMCs at 14 days post-dose 2 relative to prevaccination and in WB samples at 7, 10, 14, and 17 days post-dose 2 relative to prevaccination. Hence, in comparison with a prevaccination, 7, 10, 14, and 17 days postvaccination appeared to be suitable time points for identifying potentially clinically relevant transcriptome responses to M72/AS01 in WB samples.


Subject(s)
BCG Vaccine/administration & dosage , Lipid A/analogs & derivatives , RNA, Messenger/immunology , Saponins/administration & dosage , Adjuvants, Immunologic/administration & dosage , Adolescent , Adult , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Drug Combinations , Female , Gene Expression Profiling , Humans , Interferon-gamma/blood , Interferon-gamma/immunology , Kinetics , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lipid A/administration & dosage , Male , Middle Aged , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/immunology , RNA, Messenger/blood , RNA, Messenger/genetics , Recombinant Proteins/immunology , Vaccination , Young Adult
7.
Front Immunol ; 8: 943, 2017.
Article in English | MEDLINE | ID: mdl-28855902

ABSTRACT

To elucidate the role of innate responses in vaccine immunogenicity, we compared early responses to hepatitis B virus (HBV) surface antigen (HBsAg) combined with different Adjuvant Systems (AS) in healthy HBV-naïve adults, and included these parameters in multi-parametric models of adaptive responses. A total of 291 participants aged 18-45 years were randomized 1:1:1:1:1 to receive HBsAg with AS01B, AS01E, AS03, AS04, or Alum/Al(OH)3 at days 0 and 30 (ClinicalTrials.gov: NCT00805389). Blood protein, cellular, and mRNA innate responses were assessed at early time-points and up to 7 days after vaccination, and used with reactogenicity symptoms in linear regression analyses evaluating their correlation with HBs-specific CD4+ T-cell and antibody responses at day 44. All AS induced transient innate responses, including interleukin (IL)-6 and C-reactive protein (CRP), mostly peaking at 24 h post-vaccination and subsiding to baseline within 1-3 days. After the second but not the first injection, median interferon (IFN)-γ levels were increased in the AS01B group, and IFN-γ-inducible protein-10 levels and IFN-inducible genes upregulated in the AS01 and AS03 groups. No distinct marker or signature was specific to one particular AS. Innate profiles were comparable between AS01B, AS01E, and AS03 groups, and between AS04 and Alum groups. AS group rankings within adaptive and innate response levels and reactogenicity prevalence were similar (AS01B ≥ AS01E > AS03 > AS04 > Alum), suggesting an association between magnitudes of inflammatory and vaccine responses. Modeling revealed associations between adaptive responses and specific traits of the innate response post-dose 2 (activation of the IFN-signaling pathway, CRP and IL-6 responses). In conclusion, the ability of AS01 and AS03 to enhance adaptive responses to co-administered HBsAg is likely linked to their capacity to activate innate immunity, particularly the IFN-signaling pathway.

8.
Sci Rep ; 7(1): 8004, 2017 08 14.
Article in English | MEDLINE | ID: mdl-28808331

ABSTRACT

The ability of bacteriophages to kill bacteria is well known, as is their potential use as alternatives to antibiotics. As such, bacteriophages reach high doses locally through infection of their bacterial host in the human body. In this study we assessed the gene expression profile of peripheral blood monocytes from six donors for twelve immunity-related genes (i.e. CD14, CXCL1, CXCL5, IL1A, IL1B, IL1RN, IL6, IL10, LYZ, SOCS3, TGFBI and TNFA) induced by Staphylococcus aureus phage ISP and four Pseudomonas aeruginosa phages (i.e. PNM, LUZ19, 14-1 and GE-vB_Pae-Kakheti25). The phages were able to induce clear and reproducible immune responses. Moreover, the overall immune response was very comparable for all five phages: down-regulation of LYZ and TGFBI, and up-regulation of CXCL1, CXCL5, IL1A, IL1B, IL1RN, IL6, SOCS3 and TNFA. The observed immune response was shown to be endotoxin-independent and predominantly anti-inflammatory. Addition of endotoxins to the highly purified phages did not cause an immune response comparable to the one induced by the (endotoxin containing) phage lysate. In addition, the use of an intermediate level of endotoxins tipped the immune response to a more anti-inflammatory response, i.e. up-regulation of IL1RN and a strongly reduced expression of CXCL1 and CXCL5.


Subject(s)
Bacteriophages/immunology , Cytokines/genetics , Monocytes/immunology , Bacteriophages/pathogenicity , Cells, Cultured , Cytokines/metabolism , Humans , Immunity, Innate/genetics , Inflammation/genetics , Lipopolysaccharide Receptors/genetics , Lipopolysaccharides/immunology , Monocytes/microbiology , Monocytes/virology , Pseudomonas aeruginosa/immunology , Pseudomonas aeruginosa/virology , Staphylococcus aureus/immunology , Staphylococcus aureus/virology
9.
Clin Vaccine Immunol ; 24(6)2017 Jun.
Article in English | MEDLINE | ID: mdl-28446441

ABSTRACT

We investigated the role of AS03A (here AS03), an α-tocopherol oil-in-water emulsion-based adjuvant system, on the long-term persistence of humoral and cell-mediated immune responses to A(H1N1)pdm09 influenza vaccines. In two studies, a total of 261 healthy adults (≤60 years old) were randomized to receive two doses of AS03-adjuvanted vaccine containing 3.75 µg of hemagglutinin (HA) or nonadjuvanted vaccine containing 15 µg of hemagglutinin (in study A) or 3.75 µg of hemagglutinin (in study B) 21 days apart. Hemagglutination inhibition (HI) antibody, memory B-cell, and CD4+/CD8+ T-cell responses were characterized up to 1 year following dose 1. We also assessed the effects of age and seasonal influenza vaccination history. AS03-adjuvanted (3.75 µg HA) vaccine and nonadjuvanted vaccine at 15 µg but not at 3.75 µg HA elicited HI antibody responses persisting at levels that continued to meet European licensure criteria through month 12. At month 12, the geometric mean titer for AS03-adjuvanted vaccine was similar to that for nonadjuvanted (15-µg) vaccine in study A (1:86 and 1:88, respectively) and higher than that for nonadjuvanted (3.75-µg) vaccine in study B (1:77 and 1:35, respectively). A(H1N1)pdm09-specific CD4+ T-cell and B-cell responses were stronger in AS03-adjuvanted groups and persisted only in these groups for 12 months at levels exceeding prevaccination frequencies. Advancing age and a seasonal vaccination history tended to reduce HI antibody and memory B-cell responses and, albeit less consistently, CD4+ T-cell responses. Thus, AS03 seemed to enhance the persistence of humoral and cell-mediated responses to A(H1N1)pdm09 vaccine, allowing for antigen sparing and mitigating potential negative effects of age and previous seasonal vaccination. (These studies have been registered at ClinicalTrials.gov under registration no. NCT00968539 and NCT00989287.).


Subject(s)
Adjuvants, Immunologic/administration & dosage , Immunity, Humoral , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Polysorbates/administration & dosage , Squalene/administration & dosage , alpha-Tocopherol/administration & dosage , Adolescent , Adult , Age Factors , Antibodies, Viral/blood , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Drug Combinations , Female , Follow-Up Studies , Healthy Volunteers , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunity, Cellular , Influenza Vaccines/administration & dosage , Male , Middle Aged , Time Factors , Young Adult
10.
Malar J ; 15(1): 543, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27825382

ABSTRACT

BACKGROUND: The malaria vaccine candidate RTS,S/AS01 (GSK Vaccines) induces high IgG concentration against the circumsporozoite protein (CSP) of Plasmodium falciparum. In human vaccine recipients circulating anti-CSP antibody concentrations are associated with protection against infection but appear not to be the correlate of protection. However, in a humanized mouse model of malaria infection prophylactic administration of a human monoclonal antibody (MAL1C), derived from a RTS,S/AS01-immunized volunteer, directed against the CSP repeat region, conveyed full protection in a dose-dependent manner suggesting that antibodies alone are able to prevent P. falciparum infection when present in sufficiently high concentrations. A competition ELISA was developed to measure the presence of MAL1C-like antibodies in polyclonal sera from RTS,S/AS01 vaccine recipients and study their possible contribution to protection against infection. RESULTS: MAL1C-like antibodies present in polyclonal vaccine-induced sera were evaluated for their ability to compete with biotinylated monoclonal antibody MAL1C for binding sites on the capture antigen consisting of the recombinant protein encompassing 32 NANP repeats of CSP (R32LR). Serum samples were taken at different time points from participants in two RTS,S/AS01 vaccine studies (NCT01366534 and NCT01857869). Vaccine-induced protection status of the study participants was determined based on the outcome of experimental challenge with infected mosquito bites after vaccination. Optimal conditions were established to reliably detect MAL1C-like antibodies in polyclonal sera. Polyclonal anti-CSP antibodies and MAL1C-like antibody content were measured in 276 serum samples from RTS,S/AS01 vaccine recipients using the standard ELISA and MAL-1C competition ELISA, respectively. A strong correlation was observed between the results from these assays. However, no correlation was found between the results of either assay and protection against infection. CONCLUSIONS: The competition ELISA to measure MAL1C-like antibodies in polyclonal sera from RTS,S/AS01 vaccine recipients was robust and reliable but did not reveal the elusive correlate of protection.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Protozoan/blood , Antibody Formation , Antigens, Protozoan/immunology , Enzyme-Linked Immunosorbent Assay/methods , Malaria Vaccines/immunology , Protozoan Proteins/immunology , Vaccines, Synthetic/immunology , Adolescent , Adult , Animals , Antibodies, Protozoan/immunology , Female , Healthy Volunteers , Humans , Malaria Vaccines/administration & dosage , Male , Mice , Middle Aged , Vaccines, Synthetic/administration & dosage , Young Adult
11.
Cell ; 167(3): 643-656.e17, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27768888

ABSTRACT

Humans differ in the outcome that follows exposure to life-threatening pathogens, yet the extent of population differences in immune responses and their genetic and evolutionary determinants remain undefined. Here, we characterized, using RNA sequencing, the transcriptional response of primary monocytes from Africans and Europeans to bacterial and viral stimuli-ligands activating Toll-like receptor pathways (TLR1/2, TLR4, and TLR7/8) and influenza virus-and mapped expression quantitative trait loci (eQTLs). We identify numerous cis-eQTLs that contribute to the marked differences in immune responses detected within and between populations and a strong trans-eQTL hotspot at TLR1 that decreases expression of pro-inflammatory genes in Europeans only. We find that immune-responsive regulatory variants are enriched in population-specific signals of natural selection and show that admixture with Neandertals introduced regulatory variants into European genomes, affecting preferentially responses to viral challenges. Together, our study uncovers evolutionarily important determinants of differences in host immune responsiveness between human populations.


Subject(s)
Adaptation, Physiological/genetics , Adaptation, Physiological/immunology , Adaptive Immunity , Neanderthals/genetics , Neanderthals/immunology , Adaptive Immunity/genetics , Alleles , Animals , Bacterial Infections/genetics , Bacterial Infections/immunology , Base Sequence , Biological Evolution , Black People/genetics , Gene Expression Regulation , Genetic Variation , Humans , Immune System , Quantitative Trait Loci , RNA/genetics , Selection, Genetic , Sequence Analysis, RNA , Toll-Like Receptors/genetics , Transcription, Genetic , Virus Diseases/genetics , Virus Diseases/immunology , White People/genetics
12.
Clin Immunol ; 169: 16-27, 2016 08.
Article in English | MEDLINE | ID: mdl-27236001

ABSTRACT

Immunogenicity and safety of different adjuvants combined with a model antigen (HBsAg) were compared. Healthy HBV-naïve adults were randomized to receive HBs adjuvanted with alum or Adjuvant Systems AS01B, AS01E, AS03A or AS04 at Days 0 and 30. Different frequencies of HBs-specific CD4+ T cells 14days post dose 2 but similar polyfunctionality profiles were induced by the different adjuvants with frequencies significantly higher in the AS01B and AS01E groups than in the other groups. Antibody concentrations 30days post-dose 2 were significantly higher in AS01B, AS01E and AS03A than in other groups. Limited correlations were observed between HBs-specific CD4+ T cell and antibody responses. Injection site pain was the most common solicited local symptom and was more frequent in AS groups than in alum group. Different adjuvants formulated with the same antigen induced different adaptive immune responses and reactogenicity patterns in healthy naïve adults. The results summary for this study (GSK study number 112115 - NCT# NCT00805389) is available on the GSK Clinical Study Register and can be accessed at www.gsk-clinicalstudyregister.com.


Subject(s)
Antibody Formation/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Hepatitis B Surface Antigens/immunology , Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Adult , Double-Blind Method , Female , Hepatitis B Antibodies/blood , Hepatitis B Antibodies/immunology , Humans , Immunoassay/methods , Luminescent Measurements , Male , Vaccination/methods , Vaccines/administration & dosage
13.
PLoS One ; 9(12): e115126, 2014.
Article in English | MEDLINE | ID: mdl-25506706

ABSTRACT

BACKGROUND: The nature of protective immune responses elicited by immunization with the candidate malaria vaccine RTS,S is still incompletely understood. Antibody levels correlate with protection against malaria infection, but considerable variation in outcome is unexplained (e.g., children may experience malaria despite high anti-circumsporozoite [CS] titers). METHODS AND FINDINGS: We measured the avidity index (AI) of the anti-CS antibodies raised in subgroup of 5-17 month old children in Kenya who were vaccinated with three doses of RTS,S/AS01E between March and August 2007. We evaluated the association between the AI and the subsequent risk of clinical malaria. We selected 19 cases (i.e., with clinical malaria) and 42 controls (i.e., without clinical malaria), matching for anti-CS antibody levels and malaria exposure. We assessed their sera collected 1 month after the third dose of the vaccine, in March 2008 (range 4-10 months after the third vaccine), and at 12 months after the third vaccine dose. The mean AI was 45.2 (95% CI: 42.4 to 48.1), 45.3 (95% CI: 41.4 to 49.1) and 46.2 (95% CI; 43.2 to 49.3) at 1 month, in March 2008 (4-10 months), and at 12 months after the third vaccination, respectively (p = 0.9 by ANOVA test for variation over time). The AI was not associated with protection from clinical malaria (OR = 0.90; 95% CI: 0.49 to 1.66; p = 0.74). The AI was higher in children with high malaria exposure, as measured using the weighted local prevalence of malaria, compared to those with low malaria exposure at 1 month post dose 3 (p = 0.035). CONCLUSION: Our data suggest that in RTS,S/AS01E-vaccinated children residing in malaria endemic countries, the avidity of anti-circumsporozoite antibodies, as measured using an elution ELISA method, was not associated with protection from clinical malaria. Prior natural malaria exposure might have primed the response to RTS,S/AS01E vaccination.


Subject(s)
Antibodies, Protozoan/blood , Antibody Affinity , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Protozoan Proteins/immunology , Antibodies, Protozoan/immunology , Case-Control Studies , Humans , Infant , Kenya , Malaria, Falciparum/epidemiology , Malaria, Falciparum/immunology , Risk
14.
Hum Vaccin Immunother ; 10(8): 2211-9, 2014.
Article in English | MEDLINE | ID: mdl-25424924

ABSTRACT

This phase II, randomized, double-blind study evaluated the immunogenicity of RTS,S vaccines containing Adjuvant System AS01 or AS02 as compared with non-adjuvanted RTS,S in healthy, malaria-naïve adults (NCT00443131). Thirty-six subjects were randomized (1:1:1) to receive RTS,S/AS01, RTS,S/AS02, or RTS,S/saline at months 0, 1, and 2. Antibody responses to Plasmodium falciparum circumsporozoite (CS) and hepatitis B surface (HBs) antigens were assessed and cell-mediated immune responses evaluated by flow cytometry using intracellular cytokine staining on peripheral blood mononuclear cells. Anti-CS antibody avidity was also characterized. Safety and reactogenicity after each vaccine dose were monitored. One month after the third vaccine dose, RTS,S/AS01 (160.3 EU/mL [95%CI: 114.1-225.4]) and RTS,S/AS02 (77.4 EU/mL (95%CI: 47.3-126.7)) recipients had significantly higher anti-CS antibody geometric mean titers (GMTs) than recipients of RTS,S/saline (12.2 EU/mL (95%CI: 4.8-30.7); P < 0.0001 and P = 0.0011, respectively). The anti-CS antibody GMT was significantly higher with RTS,S/AS01 than with RTS,S/AS02 (P = 0.0135). Anti-CS antibody avidity was in the same range in all groups. CS- and HBs-specific CD4(+) T cell responses were greater for both RTS,S/AS groups than for the RTS,S/saline group. Reactogenicity was in general higher for RTS,S/AS compared with RTS,S/saline. Most grade 3 solicited adverse events (AEs) were of short duration and grade 3 solicited general AEs were infrequent in the 3 groups. No serious adverse events were reported. In conclusion, in comparison with non-adjuvanted RTS,S, both RTS,S/AS vaccines exhibited better CS-specific immune responses. The anti-CS antibody response was significantly higher with RTS,S/AS01 than with RTS,S/AS02. The adjuvanted vaccines had acceptable safety profiles.


Subject(s)
Malaria Vaccines/immunology , Vaccines, Synthetic/immunology , Adolescent , Adult , Antibodies, Protozoan/blood , Antibody Affinity , Cytokines/analysis , Double-Blind Method , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/pathology , Female , Flow Cytometry , Healthy Volunteers , Humans , Leukocytes, Mononuclear/immunology , Malaria Vaccines/administration & dosage , Malaria Vaccines/adverse effects , Male , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Treatment Outcome , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Young Adult
15.
J Immunol Methods ; 414: 1-10, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25224748

ABSTRACT

Intracellular cytokine staining (ICS) assay is increasingly used in vaccine clinical trials to measure antigen-specific T-cell mediated immune (CMI) responses in cryopreserved peripheral blood mononuclear cells (PBMCs) and whole blood. However, recent observations indicate that several parameters involved in blood processing can impact PBMC viability and CMI responses, especially in antiretroviral therapy (ART)-naïve HIV-1-infected individuals. In this phase I study (NCT01610427), we collected blood samples from 22 ART-naïve HIV-1-infected adults. PBMCs were isolated and processed for ICS assay. The individual and combined effects of the following parameters were investigated: time between blood collection and PBMC processing (time-to-process: 2, 7 or 24 h); time between PBMC thawing and initiation of in vitro stimulation with HIV-1 antigens (resting-time: 0, 2, 6 and 18 h); and duration of antigen-stimulation in PBMC cultures (stimulation-time: 6h or overnight). The cell recovery after thawing, cell viability after ICS and magnitude of HIV-specific CD8(+) T-cell responses were considered to determine the optimal combination of process conditions. The impact of time-to-process (2 or 4 h) on HIV-specific CD8(+) T-cell responses was also assessed in a whole blood ICS assay. A higher quality of cells in terms of recovery and viability (up to 81% and >80% respectively) was obtained with shorter time-to-process (less than 7 h) and resting-time (less than 2 h) intervals. Longer (overnight) rather than shorter (6 h) stimulation-time intervals increased the frequency of CD8(+)-specific T-cell responses using ICS in PBMCs without change of the functionality. The CD8(+) specific T-cell responses detected using fresh whole blood showed a good correlation with the responses detected using frozen PBMCs. Our results support the need of standardized procedures for the evaluation of CMI responses, especially in HIV-1-infected, ART-naïve patients.


Subject(s)
AIDS Vaccines/immunology , Anti-Retroviral Agents/therapeutic use , Blood Specimen Collection/standards , CD8-Positive T-Lymphocytes/immunology , HIV Infections/therapy , AIDS Vaccines/therapeutic use , Adolescent , Adult , Antigen-Antibody Reactions , CD4-Positive T-Lymphocytes/immunology , Cell Survival , Cryopreservation , Female , Flow Cytometry/methods , HIV Infections/immunology , HIV Seropositivity/immunology , HIV-1/immunology , Hematologic Tests/methods , Humans , Immunity, Cellular , In Vitro Techniques , Male , Middle Aged , Staining and Labeling/methods , Time Factors , Viral Load , Young Adult
16.
Hum Vaccin Immunother ; 10(6): 1701-10, 2014.
Article in English | MEDLINE | ID: mdl-24732325

ABSTRACT

UNLABELLED: Strategies to optimize responses to seasonal influenza vaccination in older adults include the use of adjuvants, higher antigen doses, and intradermal delivery. In this study adults aged ≥65 years (n = 450) received a single dose of 1 of 2 non-adjuvanted trivalent influenza vaccine (TIV) formulations administered intradermally (ID), both containing 6 µg of A/H1N1 and B, differing in A/H3N2 content (6 µg or 12 µg), or a single dose of 1 of 8 TIV formulations administered intramuscularly (IM) all containing 15 µg of A/H1N1 and B, differing in A/H3N2 hemagglutinin (HA) content (15 µg or 30 µg) and/or in MF59(®) adjuvant content (0%, 25%, 50%, or 100% of the standard dose). This paper focuses on the comparisons of low-dose non-adjuvanted ID, full-dose non-adjuvanted IM and full-dose MF59-adjuvanted IM formulations (n = 270). At day 22 post-vaccination, at least one European licensure immunogenicity criterion was met by all groups against all 3 strains; however, all three criteria were met against all 3 vaccine strains by the low-dose non-adjuvanted ID and the full-dose MF59-adjuvanted IM groups only. The full-dose MF59-adjuvanted IM group elicited significantly higher immune response vs. the low-dose non-adjuvanted ID formulations for most comparisons. The full-dose MF59 adjuvanted IM groups were associated with increased pain at the site of injection (P<0.01) compared to the ID groups, and the low-dose non-adjuvanted ID groups were associated with increased erythema, induration, and swelling at the injection site (P<0.0001) and unsolicited AEs compared with the IM groups. There were no differences between IM and ID groups in the frequencies of subjects experiencing solicited systemic reactions. Overall, while MF59 adjuvantation increased pain at the site of injection, and intradermal delivery increased unsolicited adverse events, erythema, induration, and swelling at the injection site, both strategies of vaccination strongly enhanced the immunogenicity of seasonal influenza vaccine in older adults compared with conventional non-adjuvanted intramuscular delivery. TRIAL REGISTRATION: http://www.clinicaltrials.gov: NCT00848848.


Subject(s)
Adjuvants, Immunologic/adverse effects , Dose-Response Relationship, Immunologic , Influenza Vaccines/adverse effects , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Polysorbates/adverse effects , Squalene/adverse effects , Adjuvants, Immunologic/administration & dosage , Aged , Aged, 80 and over , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/pathology , Female , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza B virus/immunology , Influenza Vaccines/administration & dosage , Injections, Intradermal , Injections, Intramuscular , Male , Polysorbates/administration & dosage , Squalene/administration & dosage
17.
Clin Vaccine Immunol ; 21(3): 302-11, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24391139

ABSTRACT

This phase II study evaluated the effect of chloroquine on the specific CD8(+) T-cell responses to and the safety of a booster dose of investigational human immunodeficiency virus type 1 (HIV-1) F4/AS01(B) vaccine containing 10 µg of recombinant fusion protein (F4) adjuvanted with the AS01(B) adjuvant system. Healthy adults aged 21 to 41 years, primed 3 years before with two F4/AS01(B) doses containing 10 or 30 µg of F4 (ClinicalTrials.gov registration number NCT00434512), were randomized (1:1) to receive the F4/AS01(B) booster administered alone or 2 days after chloroquine (300 mg). F4-specific CD8(+)/CD4(+) T-cell responses were characterized by intracellular cytokine staining and lymphoproliferation assays and anti-F4 antibodies by enzyme-linked immunosorbent assays (ELISAs). No effect of chloroquine on CD4(+)/CD8(+) T-cell and antibody responses and no vaccine effect on CD8(+) T-cell responses (cytokine secretion or proliferation) were detected following F4/AS01(B) booster administration. In vitro, chloroquine had a direct inhibitory effect on AS01(B) adjuvant properties; AS01-induced cytokine production decreased upon coincubation of cells with chloroquine. In the pooled group of participants primed with F4/AS01(B) containing 10 µg of F4, CD4(+) T-cell and antibody responses induced by primary vaccination persisted for at least 3 years. The F4/AS01(B) booster induced strong F4-specific CD4(+) T-cell responses, which persisted for at least 6 months with similar frequencies and polyfunctional phenotypes as following primary vaccination, and high anti-F4 antibody concentrations, reaching higher levels than those following primary vaccination. The F4/AS01(B) booster had a clinically acceptable safety and reactogenicity profile. An F4/AS01(B) booster dose, administered alone or after chloroquine, induced robust antibody and F4-specific CD4(+) T-cell responses but no significant CD8(+) T-cell responses (cytokine secretion or proliferation) in healthy adults. (This study has been registered at ClinicalTrials.gov under registration number NCT00972725).


Subject(s)
AIDS Vaccines/adverse effects , AIDS Vaccines/immunology , Antimalarials/administration & dosage , Chloroquine/administration & dosage , HIV Infections/prevention & control , HIV-1/immunology , Immunization, Secondary/methods , AIDS Vaccines/administration & dosage , Adjuvants, Immunologic/administration & dosage , Adolescent , Adult , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Cytokines/biosynthesis , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/pathology , Enzyme-Linked Immunosorbent Assay , Female , HIV Antibodies/blood , HIV Infections/immunology , Human Immunodeficiency Virus Proteins/immunology , Humans , Male , Young Adult
18.
Vaccine ; 31(36): 3739-46, 2013 Aug 12.
Article in English | MEDLINE | ID: mdl-23707169

ABSTRACT

A recombinant fusion protein (F4) consisting of HIV-1 p17, p24, reverse transcriptase (RT) and Nef, adjuvanted with AS01, induced strong and broad CD4(+) T cell responses in healthy volunteers. Here we compare these vaccine-induced CD4(+) T cell responses with the ones induced by natural infection in patients with varying disease courses. Thirty-eight HIV-infected, antiretroviral treatment-naïve subjects were classified into four categories: 8 long-term non-progressors (infection ≥7 years; CD4(+) T cells ≥500/µL), 10 recently infected individuals (infection ≤2 years; CD4(+) T cells ≥500/µL), 10 typical early progressors (CD4(+) T cells ≤350/µL), and 10 viral controllers (plasma HIV-1 RNA <1000copies/mL). Peripheral blood mononuclear cells were stimulated in vitro with p17, p24, RT and Nef peptide pools and analyzed by flow cytometry for expression of IL-2, IFN-γ, TNF-α and CD40L. CD4(+) T cell responses were compared to those measured with the same method in 50 HIV-uninfected subjects immunized with the F4/AS01 candidate vaccine (NCT00434512). After in vitro stimulation with p17, p24 and RT antigen viral controllers had significantly more CD4(+) T cells co-expressing IL-2, IFN-γ and TNF-α than other HIV patient categories. The magnitude and quality of these responses in viral controllers were comparable to those observed in F4/AS01 vaccine recipients. In contrast with viral controllers, triple cytokine producing CD4(+) T cells in vaccinees also expressed CD40L. Subjects who spontaneously control an HIV infection display polyfunctional CD4(+) T cell responses to p17, p24, RT and Nef, with similar magnitude and qualities as those induced in healthy volunteers by an adjuvanted HIV candidate vaccine (F4/AS01).


Subject(s)
AIDS Vaccines/therapeutic use , Adjuvants, Immunologic/administration & dosage , CD4-Positive T-Lymphocytes/immunology , HIV Infections/immunology , AIDS Vaccines/administration & dosage , Adult , Aged , CD40 Antigens/immunology , Cross-Sectional Studies , Female , HIV Antigens/immunology , HIV Core Protein p24/immunology , HIV Long-Term Survivors , HIV Reverse Transcriptase/immunology , HIV-1 , Healthy Volunteers , Humans , Interferon-gamma/immunology , Interleukin-2/immunology , Male , Middle Aged , Randomized Controlled Trials as Topic , Recombinant Fusion Proteins/immunology , Tumor Necrosis Factor-alpha/immunology , gag Gene Products, Human Immunodeficiency Virus/immunology , nef Gene Products, Human Immunodeficiency Virus/immunology
19.
PLoS One ; 8(2): e55438, 2013.
Article in English | MEDLINE | ID: mdl-23437055

ABSTRACT

UNLABELLED: Mucosal antibodies harboring various antiviral activities may best protect mucosal surfaces against early HIV-1 entry at mucosal sites and they should be ideally induced by prophylactic HIV-1 vaccines for optimal prevention of sexually transmitted HIV-1. A phase I, double-blind, randomized, placebo-controlled trial was conducted in twenty-four healthy HIV-uninfected young women. The study objectives were to assess the safety, tolerability and immunogenicity of virosomes harboring surface HIV-1 gp41-derived P1 lipidated peptides (MYM-V101). Participants received placebo or MYM-V101 vaccine at 10 µg/dose or 50 µg/dose intramuscularly at week 0 and 8, and intranasally at week 16 and 24. MYM-V101 was safe and well-tolerated at both doses administered by the intramuscular and intranasal routes, with the majority of subjects remaining free of local and general symptoms. P1-specific serum IgGs and IgAs were induced in all high dose recipients after the first injection. After the last vaccination, vaginal and rectal P1-specific IgGs could be detected in all high dose recipients. Approximately 63% and 43% of the low and high dose recipients were respectively tested positive for vaginal P1-IgAs, while 29% of the subjects from the high dose group tested positive for rectal IgAs. Serum samples had total specific IgG and IgA antibody concentrations ≥ 0.4 µg/mL, while mucosal samples were usually below 0.01 µg/mL. Vaginal secretions from MYM-V101 vaccinated subjects were inhibiting HIV-1 transcytosis but had no detectable neutralizing activity. P1-specific Th1 responses could not be detected on PBMC. This study demonstrates the excellent safety and tolerability of MYM-V101, eliciting systemic and mucosal antibodies in the majority of subjects. Vaccine-induced mucosal anti-gp41 antibodies toward conserved gp41 motifs were harboring HIV-1 transcytosis inhibition activity and may contribute to reduce sexually-transmitted HIV-1. TRIAL REGISTRATION: ClinicalTrials.gov NCT01084343.


Subject(s)
AIDS Vaccines/adverse effects , HIV Envelope Protein gp41/immunology , HIV-1/immunology , Mucous Membrane/immunology , Peptide Fragments/immunology , Vaccination , Vaccines, Subunit/adverse effects , Virosomes/immunology , AIDS Vaccines/immunology , Adult , Amino Acid Sequence , Anti-HIV Agents/immunology , Antibody Specificity/immunology , Female , HIV Antibodies/blood , HIV Envelope Protein gp41/chemistry , HIV Infections/blood , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/virology , Health , Humans , Immunity, Cellular/immunology , Injections, Intramuscular , Molecular Sequence Data , Mucous Membrane/virology , Peptide Fragments/chemistry , Transcytosis/immunology , Vaccines, Subunit/immunology , Young Adult
20.
Hum Vaccin Immunother ; 9(6): 1254-62, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23434737

ABSTRACT

Herpes simplex virus (HSV) type 2 (HSV-2) is the main cause of genital and neonatal herpes and is highly prevalent worldwide. Previous phase I and II studies showed the immunogenicity and safety of the candidate prophylactic HSV-2 glycoprotein D-based subunit vaccine (gD2-AS04), containing aluminum hydroxide and 3-O-deacylated monophosphoryl lipid A (MPL) as adjuvant (AS04), in healthy adults. The primary objective of the study presented here was to compare the immunogenicity and safety of five different vaccine formulations: 3 different antigen doses [20, 40 or 80 µg of truncated glycoprotein D from HSV-2 strain (gD-2t)], different aluminum salts [AlPO4 or Al(OH)3], different preservatives or different volumes of vaccine (0.5 or 1 ml). One hundred and fifty healthy men and women aged 18-45 years, with negative serological markers for HSV-1 and HSV-2 infection, were vaccinated with one of 5 formulations of the gD2-AS04 candidate vaccine according to a 0-, 1-, 6-month schedule. No statistically significant difference was observed in humoral or cellular immune responses between different antigen doses or the different aluminum salts, preservatives or volumes of vaccine. The gD2-AS04 vaccine was well tolerated by study participants for the duration of the study period. Local symptoms were more frequently reported than general symptoms, with muscle stiffness and/or injection site redness being the most frequently reported. Overall, the incidence of adverse events was comparable in all groups. Based on these results the gD2-AS04 formulation, containing 20 µg of gD-2t, was selected for evaluation of prophylactic efficacy in further clinical trials.


Subject(s)
Aluminum Hydroxide/adverse effects , Herpes Genitalis/prevention & control , Herpesvirus Vaccines/adverse effects , Herpesvirus Vaccines/immunology , Lipid A/analogs & derivatives , Viral Envelope Proteins/immunology , Adolescent , Adult , Aluminum Hydroxide/administration & dosage , Double-Blind Method , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/pathology , Female , Healthy Volunteers , Herpes Genitalis/immunology , Herpesvirus Vaccines/administration & dosage , Humans , Immunity, Cellular , Immunity, Humoral , Incidence , Lipid A/administration & dosage , Lipid A/adverse effects , Male , Vaccination/methods , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/adverse effects , Vaccines, Subunit/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...