Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
2.
ACS Chem Neurosci ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795032

ABSTRACT

TTK21 is a small-molecule activator of p300/creb binding protein (CBP) acetyltransferase activity, which, upon conjugation with a glucose-derived carbon nanosphere (CSP), can efficiently cross the blood-brain barrier and activate histone acetylation in the brain. Its role in adult neurogenesis and retention of long-term spatial memory following intraperitoneal (IP) administration is well established. In this study, we successfully demonstrate that CSP-TTK21 can be effectively administered via oral gavage. Using a combination of molecular biology, microscopy, and electrophysiological techniques, we systematically investigate the comparative efficacy of oral administration of CSP and CSP-TTK21 in wild-type mice and evaluate their functional effects in comparison to intraperitoneal (IP) administration. Our findings indicate that CSP-TTK21, when administered orally, induces long-term potentiation in the hippocampus without significantly altering basal synaptic transmission, a response comparable to that achieved through IP injection. Remarkably, in a spinal cord injury model, oral administration of CSP-TTK21 exhibits efficacy equivalent to that of IP administration. Furthermore, our research demonstrates that oral delivery of CSP-TTK21 leads to improvements in motor function, histone acetylation dynamics, and increased expression of regeneration-associated genes (RAGs) in a spinal injury rat model, mirroring the effectiveness of IP administration. Importantly, no toxic and mutagenic effects of CSP-TTK21 are observed at a maximum tolerated dose of 1 g/kg in Sprague-Dawley (SD) rats via the oral route. Collectively, these results underscore the potential utility of CSP as an oral drug delivery system, particularly for targeting the neural system.

3.
Article in English | MEDLINE | ID: mdl-38366731

ABSTRACT

Significance: Nicotinamide adenine dinucleotide (NADH) represents the reduced form of NAD+, and together they constitute the two forms of the nicotinamide adenine dinucleotide whose balance is named as the NAD+/NADH ratio. NAD+/NADH ratio is mainly involved in redox reactions since both the molecules are responsible forcarrying electrons to maintain redox homeostasis. Recent Advances: NADH acts as a reducing agent, and one of the most known processes exploiting NADH function is energy metabolism. The two main pathways generating energy and involving NADH are glycolysis and oxidative phosphorylation, occurring in cell cytosol and in the mitochondrial matrix, respectively. Critical Issues: Although NADH is primarily produced through the reduction of NAD+ and consumed by its own oxidation, several are the biosynthetic and consumption pathways, reflecting the NADH role in multiple cellular processes. This review gathers all the main current data referring to NADH incorrelation with metabolic and cellular pathways, such as its coenzyme activity, effect in cell death, and on modulating redox and calcium homeostasis. Future Directions: Gene expression control, as well as the potential impact on neurodegenerative, cardiac disorders and infections, suggest NADH application in clinical settings.Thorough clinical trials and continued investigation into the long-term impacts of NADH are crucial to validate its effectiveness and safety, thereby facilitating its wider acceptance as a therapeutic option in medical practice.

4.
Elife ; 132024 Feb 09.
Article in English | MEDLINE | ID: mdl-38289036

ABSTRACT

Reactive astrogliosis is a common pathological hallmark of CNS injury, infection, and neurodegeneration, where reactive astrocytes can be protective or detrimental to normal brain functions. Currently, the mechanisms regulating neuroprotective astrocytes and the extent of neuroprotection are poorly understood. Here, we report that conditional deletion of serum response factor (SRF) in adult astrocytes causes reactive-like hypertrophic astrocytes throughout the mouse brain. These SrfGFAP-ERCKO astrocytes do not affect neuron survival, synapse numbers, synaptic plasticity or learning and memory. However, the brains of Srf knockout mice exhibited neuroprotection against kainic-acid induced excitotoxic cell death. Relevant to human neurodegenerative diseases, SrfGFAP-ERCKO astrocytes abrogate nigral dopaminergic neuron death and reduce ß-amyloid plaques in mouse models of Parkinson's and Alzheimer's disease, respectively. Taken together, these findings establish SRF as a key molecular switch for the generation of reactive astrocytes with neuroprotective functions that attenuate neuronal injury in the setting of neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Astrocytes , Animals , Humans , Mice , Alzheimer Disease/metabolism , Astrocytes/metabolism , Cells, Cultured , Disease Models, Animal , Mice, Knockout , Neuroprotection , Serum Response Factor/metabolism
5.
Geroscience ; 45(3): 1817-1835, 2023 06.
Article in English | MEDLINE | ID: mdl-36964402

ABSTRACT

Claims surrounding exceptional longevity are sometimes disputed or dismissed for lack of credible evidence. Here, we present three DNA methylation-based age estimators (epigenetic clocks) for verifying age claims of centenarians. The three centenarian clocks were developed based on n = 7039 blood and saliva samples from individuals older than 40, including n = 184 samples from centenarians, 122 samples from semi-supercentenarians (aged 105 +), and 25 samples from supercentenarians (aged 110 +). The oldest individual was 115 years old. Our most accurate centenarian clock resulted from applying a neural network model to a training set composed of individuals older than 40. An epigenome-wide association study of age in different age groups revealed that age effects in young individuals (age < 40) are correlated (r = 0.55) with age effects in old individuals (age > 90). We present a chromatin state analysis of age effects in centenarians. The centenarian clocks are expected to be useful for validating claims surrounding exceptional old age.


Subject(s)
Centenarians , Longevity , Aged, 80 and over , Humans , Longevity/genetics , DNA Methylation , Epigenesis, Genetic/genetics
6.
Exp Brain Res ; 240(10): 2525-2567, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36063192

ABSTRACT

Intellectual disability (ID) and autism spectrum disorder (ASD) are neurodevelopmental disorders that have become a primary clinical and social concern, with a prevalence of 2-3% in the population. Neuronal function and behaviour undergo significant malleability during the critical period of development that is found to be impaired in ID/ASD. Human genome sequencing studies have revealed many genetic variations associated with ASD/ID that are further verified by many approaches, including many mouse and other models. These models have facilitated the identification of fundamental mechanisms underlying the pathogenesis of ASD/ID, and several studies have proposed converging molecular pathways in ASD/ID. However, linking the mechanisms of the pathogenic genes and their molecular characteristics that lead to ID/ASD has progressed slowly, hampering the development of potential therapeutic strategies. This review discusses the possibility of recognising the common molecular causes for most ASD/ID based on studies from the available models that may enable a better therapeutic strategy to treat ID/ASD. We also reviewed the potential biomarkers to detect ASD/ID at early stages that may aid in diagnosis and initiating medical treatment, the concerns with drug failure in clinical trials, and developing therapeutic strategies that can be applied beyond a particular mutation associated with ASD/ID.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Animals , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/genetics , Humans , Intellectual Disability/complications , Mice , Neurons , Signal Transduction/genetics
7.
Nutrients ; 14(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36079870

ABSTRACT

Ketone bodies are small compounds derived from fatty acids that behave as an alternative mitochondrial energy source when insulin levels are low, such as during fasting or strenuous exercise. In addition to the metabolic function of ketone bodies, they also have several signaling functions separate from energy production. In this perspective, we review the main current data referring to ketone bodies in correlation with nutrition and metabolic pathways as well as to the signaling functions and the potential impact on clinical conditions. Data were selected following eligibility criteria accordingly to the reviewed topic. We used a set of electronic databases (Medline/PubMed, Scopus, Web of Sciences (WOS), Cochrane Library) for a systematic search until July 2022 using MeSH keywords/terms (i.e., ketone bodies, BHB, acetoacetate, inflammation, antioxidant, etc.). The literature data reported in this review need confirmation with consistent clinical trials that might validate the results obtained in in vitro and in vivo in animal models. However, the data on exogenous ketone consumption and the effect on the ketone bodies' brain uptake and metabolism might spur the research to define the acute and chronic effects of ketone bodies in humans and pursue the possible implication in the prevention and treatment of human diseases. Therefore, additional studies are required to examine the potential systemic and metabolic consequences of ketone bodies.


Subject(s)
Ketosis , Animals , Antioxidants/metabolism , Brain/metabolism , Fasting , Humans , Ketone Bodies/metabolism , Ketosis/metabolism
8.
Aging Cell ; 21(10): e13696, 2022 10.
Article in English | MEDLINE | ID: mdl-36052758

ABSTRACT

Plasma transfusions are standard treatments to replace missing proteins in people with rare genetic diseases. Prior studies have demonstrated that heterochronic parabiosis has beneficial effects on several tissues of old animals receiving young blood. Human clinical trials are currently underway to investigate whether the infusion of plasma or plasma-derived factors from young donors can be used to mitigate human age-related conditions. Here, we use data from a safety study (n = 18, mean age 74) to investigate whether human umbilical cord plasma concentrate (hereinafter Plasma Concentrate) injected weekly (1 ml intramuscular) into elderly human subjects over a 10-week period affects different biomarkers, including epigenetic age measures, standard clinical biomarkers of organ dysfunction, mitochondrial DNA copy number (mtDNA-CN), and leukocyte telomere length. This study shows that treatment with plasma concentrate is safe. More than 20 clinical biomarkers were significantly and beneficially altered following the treatments. For example, creatinine was significantly decreased (p = 0.0039), while estimated glomerular filtration rate (eGFR) was increased (p = 0.0044), indicating the treatment may improve biomarkers of kidney function. Three of four immunoglobulin biomarkers decreased, while telomere length and mtDNA-CN were not significantly affected by the treatment. The treatment reduced DNA methylation-based GrimAge by an average of 0.82 years (p = 0.0093), suggests a reduction in morbidity and mortality risk. By contrast, no significant results could be observed for epigenetic clocks that estimate chronological age. Our results support the view that plasma concentrate contains youth-promoting factors.


Subject(s)
DNA Methylation , DNA, Mitochondrial , Adolescent , Aged , Aging/genetics , Biomarkers/metabolism , Creatinine , DNA Methylation/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Epigenesis, Genetic , Humans , Infant , Umbilical Cord/metabolism
9.
Int J Mol Sci ; 23(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36142719

ABSTRACT

Epilepsy, a heterogeneous group of brain-related diseases, has continued to significantly burden society and families. Epilepsy comorbid with neurodevelopmental disorders (NDDs) is believed to occur due to multifaceted pathophysiological mechanisms involving disruptions in the excitation and inhibition (E/I) balance impeding widespread functional neuronal circuitry. Although the field has received much attention from the scientific community recently, the research has not yet translated into actionable therapeutics to completely cure epilepsy, particularly those comorbid with NDDs. In this review, we sought to elucidate the basic causes underlying epilepsy as well as those contributing to the association of epilepsy with NDDs. Comprehensive emphasis is put on some key neurodevelopmental genes implicated in epilepsy, such as MeCP2, SYNGAP1, FMR1, SHANK1-3 and TSC1, along with a few others, and the main electrophysiological and behavioral deficits are highlighted. For these genes, the progress made in developing appropriate and valid rodent models to accelerate basic research is also detailed. Further, we discuss the recent development in the therapeutic management of epilepsy and provide a briefing on the challenges and caveats in identifying and testing species-specific epilepsy models.


Subject(s)
Autism Spectrum Disorder , Epilepsy , Neurodevelopmental Disorders , Animals , Autism Spectrum Disorder/genetics , Disease Models, Animal , Epilepsy/genetics , Fragile X Mental Retardation Protein , Humans , Neurodevelopmental Disorders/genetics , Rodentia
10.
Exp Brain Res ; 240(1): 289-309, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34739555

ABSTRACT

Haploinsufficiency in SYNGAP1 is implicated in intellectual disability (ID) and autism spectrum disorder (ASD) and affects the maturation of dendritic spines. The abnormal spine development has been suggested to cause a disbalance of excitatory and inhibitory (E/I) neurotransmission at distinct developmental periods. In addition, E/I imbalances in Syngap1+/- mice might be due to abnormalities in K+-Cl- co-transporter function (NKCC1, KCC2), in a maner similar to the murine models of Fragile-X and Rett syndromes. To study whether an altered intracellular chloride ion concentration represents an underlying mechanism of modified function of GABAergic synapses in Dentate Gyrus Granule Cells of Syngap1+/- recordings were performed at different developmental stages of the mice. We observed depolarised neurons at P14-15 as illustrated by decreased Cl- reversal potential in Syngap1+/- mice. The KCC2 expression was decreased compared to Wild-type (WT) mice at P14-15. The GSK-3ß inhibitor, 6-bromoindirubin-3'-oxime (6BIO) that crosses the blood-brain barrier, was tested to restore the function of GABAergic synapses. We discovered that the intraperitoneal administration of 6BIO during the critical period or young adolescents [P30 to P80 (4-week to 10-week)] normalised an altered E/I balance, the deficits of synaptic plasticity, and behavioural performance like social novelty, anxiety, and memory of the Syngap1+/- mice. In summary, altered GABAergic function in Syngap1+/- mice is due to reduced KCC2 expression leading to an increase in the intracellular chloride concentration that can be counteracted by the 6BIO, which restored cognitive, emotional, and social symptoms by pharmacological intervention, particularly in adulthood.


Subject(s)
Autism Spectrum Disorder , ras GTPase-Activating Proteins , Animals , Glycogen Synthase Kinase 3 beta , Mice , Synapses , Synaptic Transmission
11.
PLoS Biol ; 19(11): e3001432, 2021 11.
Article in English | MEDLINE | ID: mdl-34813590

ABSTRACT

Homeostatic scaling in neurons has been attributed to the individual contribution of either translation or degradation; however, there remains limited insight toward understanding how the interplay between the two processes effectuates synaptic homeostasis. Here, we report that a codependence between protein synthesis and degradation mechanisms drives synaptic homeostasis, whereas abrogation of either prevents it. Coordination between the two processes is achieved through the formation of a tripartite complex between translation regulators, the 26S proteasome, and the miRNA-induced silencing complex (miRISC) components such as Argonaute, MOV10, and Trim32 on actively translating transcripts or polysomes. The components of this ternary complex directly interact with each other in an RNA-dependent manner. Disruption of polysomes abolishes this ternary interaction, suggesting that translating RNAs facilitate the combinatorial action of the proteasome and the translational apparatus. We identify that synaptic downscaling involves miRISC remodeling, which entails the mTORC1-dependent translation of Trim32, an E3 ligase, and the subsequent degradation of its target, MOV10 via the phosphorylation of p70 S6 kinase. We find that the E3 ligase Trim32 specifically polyubiquitinates MOV10 for its degradation during synaptic downscaling. MOV10 degradation alone is sufficient to invoke downscaling by enhancing Arc translation through its 3' UTR and causing the subsequent removal of postsynaptic AMPA receptors. Synaptic scaling was occluded when we depleted Trim32 and overexpressed MOV10 in neurons, suggesting that the Trim32-MOV10 axis is necessary for synaptic downscaling. We propose a mechanism that exploits a translation-driven protein degradation paradigm to invoke miRISC remodeling and induce homeostatic scaling during chronic network activity.


Subject(s)
Homeostasis/genetics , MicroRNAs/metabolism , Protein Biosynthesis/genetics , Proteolysis , RNA-Induced Silencing Complex/metabolism , Animals , Cytoskeletal Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , MicroRNAs/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Phosphorylation , Polyribosomes/metabolism , Polyubiquitin/metabolism , Proteasome Endopeptidase Complex/metabolism , Rats, Sprague-Dawley , Receptors, AMPA/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Synapses/metabolism , Transcription Factors/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
13.
Neurobiol Learn Mem ; 180: 107415, 2021 04.
Article in English | MEDLINE | ID: mdl-33647449

ABSTRACT

Organisms have the unique ability to adapt to their environment by making use of external inputs. In the process, the brain is shaped by experiences that go hand-in-hand with optimisation of neural circuits. As such, there exists a time window for the development of different brain regions, each unique for a particular sensory modality, wherein the propensity of forming strong, irreversible connections are high, referred to as a critical period of development. Over the years, this domain of neurodevelopmental research has garnered considerable attention from many scientists, primarily because of the intensive activity-dependent nature of development. This review discusses the cellular, molecular, and neurophysiological bases of critical periods of different sensory modalities, and the disorders associated in cases the regulators of development are dysfunctional. Eventually, the neurobiological bases of the behavioural abnormalities related to developmental pathologies are discussed. A more in-depth insight into the development of the brain during the critical period of plasticity will eventually aid in developing potential therapeutics for several neurodevelopmental disorders that are categorised under critical period disorders.


Subject(s)
Brain/growth & development , Critical Period, Psychological , Neurodevelopmental Disorders/physiopathology , Animals , Anxiety , Autism Spectrum Disorder/physiopathology , Cell Differentiation/physiology , Cerebral Cortex/growth & development , Humans , Intellectual Disability/physiopathology , Neurogenesis/physiology , Neuroglia , Neuronal Plasticity/physiology , Social Behavior
14.
Aging (Albany NY) ; 13(4): 4734-4746, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627519

ABSTRACT

The view of aging has evolved in parallel with the advances in biomedical sciences. Long considered as an irreversible process where interventions were only aimed at slowing down its progression, breakthrough discoveries like animal cloning and cell reprogramming have deeply changed our understanding of postnatal development, giving rise to the emerging view that the epigenome is the driver of aging. The idea was significantly strengthened by the converging discovery that DNA methylation (DNAm) at specific CpG sites could be used as a highly accurate biomarker of age defined by an algorithm known as the Horvath clock. It was at this point where epigenetic rejuvenation came into play as a strategy to reveal to what extent biological age can be set back by making the clock tick backwards. Initial evidence suggests that when the clock is forced to tick backwards in vivo, it is only able to drag the phenotype to a partially rejuvenated condition. In order to explain the results, a bimodular epigenome is proposed, where module A represents the DNAm clock component and module B the remainder of the epigenome. Epigenetic rejuvenation seems to hold the key to arresting or even reversing organismal aging.


Subject(s)
Aging/genetics , Epigenome/genetics , Rejuvenation/physiology , Animals , Biomarkers , Cellular Reprogramming , DNA Methylation , Humans
15.
Sci Rep ; 11(1): 96, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420088

ABSTRACT

Maintenance of cellular proteostasis is vital for post-mitotic cells like neurons to sustain normal physiological function and homeostasis, defects in which are established hallmarks of several age-related conditions like AD, PD, HD, and ALS. The Spatio-temporal accumulation of aggregated proteins in the form of inclusion bodies/plaques is one of the major characteristics of many neurodegenerative diseases, including Huntington's disease (HD). Toxic accumulation of HUNTINGTIN (HTT) aggregates in neurons bring about the aberrant phenotypes of HD, including severe motor dysfunction, dementia, and cognitive impairment at the organismal level, in an age-dependent manner. In several cellular and animal models, aggrephagy induction has been shown to clear aggregate-prone proteins like HTT and ameliorate disease pathology by conferring neuroprotection. In this study, we used the mouse model of HD, R6/2, to understand the pathogenicity of mHTT aggregates, primarily focusing on autophagy dysfunction. We report that basal autophagy is not altered in R6/2 mice, whilst being functional at a steady-state level in neurons. Moreover, we tested the efficacy of a known autophagy modulator, Nilotinib (Tasigna™), presently in clinical trials for PD, and HD, in curbing mHTT aggregate growth and their potential clearance, which was ineffective in both inducing autophagy and rescuing the pathological phenotypes in R6/2 mice.


Subject(s)
Autophagy , Huntingtin Protein/metabolism , Huntington Disease/physiopathology , Animals , Disease Models, Animal , Female , Humans , Huntingtin Protein/chemistry , Huntingtin Protein/genetics , Huntington Disease/genetics , Huntington Disease/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons/cytology , Neurons/metabolism , Protein Aggregates , Spatio-Temporal Analysis
16.
Geroscience ; 43(2): 579-591, 2021 04.
Article in English | MEDLINE | ID: mdl-33123847

ABSTRACT

C60 is a potent antioxidant that has been reported to substantially extend the lifespan of rodents when formulated in olive oil (C60-OO) or extra virgin olive oil (C60-EVOO). Despite there being no regulated form of C60-OO, people have begun obtaining it from online sources and dosing it to themselves or their pets, presumably with the assumption of safety and efficacy. In this study, we obtain C60-OO from a sample of online vendors, and find marked discrepancies in appearance, impurity profile, concentration, and activity relative to pristine C60-OO formulated in-house. We additionally find that pristine C60-OO causes no acute toxicity in a rodent model but does form toxic species that can cause significant morbidity and mortality in mice in under 2 weeks when exposed to light levels consistent with ambient light. Intraperitoneal injections of C60-OO did not affect the lifespan of CB6F1 female mice. Finally, we conduct a lifespan and health span study in males and females C57BL/6 J mice comparing oral treatment with pristine C60-EVOO and EVOO alone versus untreated controls. We failed to observe significant lifespan and health span benefits of C60-EVOO or EVOO supplementation compared to untreated controls, both starting the treatment in adult or old age. Our results call into question the biological benefit of C60-OO in aging.


Subject(s)
Antioxidants , Longevity , Animals , Female , Male , Mice , Mice, Inbred C57BL , Olive Oil
17.
Mol Biol Rep ; 47(11): 9225-9234, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33090308

ABSTRACT

Exome sequencing is a prominent tool to identify novel and deleterious mutations which could be non-sense, frameshift, and canonical splice-site mutations in a specific gene. De novo mutations in SYNGAP1, which codes for synaptic RAS-GTPase activating the protein, causes Intellectual disability (ID) and Autism Spectrum Disorder (ASD). SYNGAP1 related ASD/ID is one of the rare diseases that are detrimental to the healthy neuronal developmental and disrupts the global development of a child. We report the first SYNGAP1 heterozygous patient from Indian cohort. We report a case of a child of 2-year old with global developmental delay, microcephaly subtle dysmorphism, absence seizures, disrupted sleep, delay in learning a language, and eating problems. Upon further validation, the child has a few traits of ASD. Here, based on focused exome sequencing, we report a de novo heterozygous mutation in SYNGAP1 exon 11 with c. 1861 C > T (p.arg621ter). Currently, the child is on Atorvastatin, a RAS inhibitor, already available in the market for the treatment of hypercholesterolemia and has shown considerable improvement in global behaviour and cognitive development. The long-term follow up of the child's development would contribute to the already existing knowledge of the developmental trajectory in individuals with SYNGAP1 heterozygous mutation. In this report, we discuss the finding of a novel mutation in one of the genes, SYNGAP1, implicated in ASD/ID. Besides, we discuss the current treatment prescribed to the patient and the progress of global developmental of the child.


Subject(s)
Autism Spectrum Disorder/genetics , Intellectual Disability/genetics , Mutation , ras GTPase-Activating Proteins/genetics , Abnormalities, Multiple/drug therapy , Abnormalities, Multiple/genetics , Abnormalities, Multiple/physiopathology , Amino Acid Sequence , Anticholesteremic Agents/therapeutic use , Atorvastatin/therapeutic use , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/physiopathology , Child, Preschool , Exons/genetics , Heterozygote , Humans , India , Intellectual Disability/drug therapy , Intellectual Disability/physiopathology , Male , Exome Sequencing , ras GTPase-Activating Proteins/metabolism
18.
Elife ; 92020 09 21.
Article in English | MEDLINE | ID: mdl-32955432

ABSTRACT

Early adversity is a risk factor for the development of adult psychopathology. Common across multiple rodent models of early adversity is increased signaling via forebrain Gq-coupled neurotransmitter receptors. We addressed whether enhanced Gq-mediated signaling in forebrain excitatory neurons during postnatal life can evoke persistent mood-related behavioral changes. Excitatory hM3Dq DREADD-mediated chemogenetic activation of forebrain excitatory neurons during postnatal life (P2-14), but not in juvenile or adult windows, increased anxiety-, despair-, and schizophrenia-like behavior in adulthood. This was accompanied by an enhanced metabolic rate of cortical and hippocampal glutamatergic and GABAergic neurons. Furthermore, we observed reduced activity and plasticity-associated marker expression, and perturbed excitatory/inhibitory currents in the hippocampus. These results indicate that Gq-signaling-mediated activation of forebrain excitatory neurons during the critical postnatal window is sufficient to program altered mood-related behavior, as well as functional changes in forebrain glutamate and GABA systems, recapitulating aspects of the consequences of early adversity.


Stress and adversity in early childhood can have long-lasting effects, predisposing people to mental illness and mood disorders in adult life. The weeks immediately before and after birth are critical for establishing key networks of neurons in the brain. Therefore, any disruption to these neural circuits during this time can be detrimental to emotional development. However, it is still unclear which cellular mechanisms cause these lasting changes in behavior. Studies in animals suggest that these long-term effects could result from abnormalities in a few signaling pathways in the brain. For example, it has been proposed that overstimulating the cells that activate circuits in the forebrain ­ also known as excitatory neurons ­ may contribute to the behavioral changes that persist into adulthood. To test this theory, Pati et al. used genetic engineering to modulate a signaling pathway in male mice, which is known to stimulate excitatory neurons in the forebrain. The experiments showed that prolonged activation of excitatory neurons in the first two weeks after birth resulted in anxious and despair-like behaviors as the animals aged. The mice also displayed discrepancies in how they responded to certain external sensory information, which is a hallmark of schizophrenia-like behavior. However, engineering the same changes in adolescent and adult mice had no effect on their mood-related behaviors. This animal study reinforces just how critical the first few weeks of life are for optimal brain development. It provides an insight into a possible mechanism of how disruption during this time could alter emotional behavior. The findings are also relevant to psychiatrists interested in the underlying causes of mental illness after early childhood adversity.


Subject(s)
Affect/physiology , Behavior, Animal/physiology , Neurons/physiology , Prosencephalon/physiology , Receptors, G-Protein-Coupled/physiology , Animals , Animals, Newborn/growth & development , Animals, Newborn/physiology , Anxiety/etiology , Female , GABAergic Neurons/physiology , Hippocampus/physiology , Male , Mice
19.
Med Hypotheses ; 142: 109794, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32413698

ABSTRACT

Excitatory amino acid transporter-2 (EAAT-2) protein localized in the membrane of glial cells are responsible for the clearance of glutamate in synapse and it plays a key role among the five glutamate transporters (EAATs) in regulating synaptic transmission and preventing excitotoxicity in neurons. EAAT-2 dysfunction has been associated with the neuropathology of Alzheimer's disease (AD). Impairment of EAAT-2 transporter function results excess accumulation of glutamate in synaptic cleft that acts on post-synaptic glutaminergic receptors excessively resulting in influx of Na+ and Ca2+ ions into the neurons. This triggers excitotoxicity in post-synaptic neurons by activating apoptotic or necrotic pathways causing neurodegeneration in AD. The compounds that increase the EAAT-2 activity may have therapeutic potential for neuroprotection in AD. The positive allosteric site activation of EAAT-2 represents a promising entry point for the identification of novel pharmacological compounds for the management of neurodegenerative conditions involving glutamate-mediated excitotoxicity. We hypothesize, therefore, that the positive allosteric activators may enhance glutamate clearance from the synaptic cleft by promoting orthosteric binding of glutamate ligand in EAAT-2 transporter protein and attenuate the excitotoxicity in neurons and prevent the disease progression of AD.


Subject(s)
Alzheimer Disease , Excitatory Amino Acid Transporter 2 , Allosteric Regulation , Alzheimer Disease/drug therapy , Excitatory Amino Acid Transporter 2/metabolism , Glutamic Acid , Humans , Neuroglia
20.
Methods Mol Biol ; 2138: 207-216, 2020.
Article in English | MEDLINE | ID: mdl-32219750

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) and its related metabolites (NADome) are important endogenous analytes that are thought to play important roles in cellular metabolism, inflammation, oxidative stress, cancer, neurodegeneration, and aging in mammals. However, these analytes are unstable during the collection of biological fluids, which is a major limiting factor for their quantitation. Herein, we describe a highly robust and quantitative method using liquid chromatography coupled to tandem mass spectrometry to quantify the NADome in whole blood, plasma, mononuclear cells, platelets, cerebrospinal fluid (CSF), and urine. This methodology represents a "gold standard" of measure for understanding biological pathways and developing targeted pharmacological interventions to modulate NAD+ biosynthesis and NAD-dependent mediators in health and disease.


Subject(s)
Aging/metabolism , Biomarkers/metabolism , Chromatography, Liquid/methods , Healthy Aging/metabolism , NAD/metabolism , Tandem Mass Spectrometry/methods , Aging/blood , Aging/urine , Biomarkers/blood , Biomarkers/urine , Blood Platelets/metabolism , Cells, Cultured , Cerebrospinal Fluid/metabolism , Evaluation Studies as Topic , Healthy Aging/blood , Healthy Aging/urine , Humans , Inflammation/blood , Inflammation/metabolism , Inflammation/urine , Leukocytes, Mononuclear/metabolism , NAD/blood , NAD/urine , Oxidative Stress/physiology , Urine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...