Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
BMJ Open ; 14(3): e081635, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38458785

ABSTRACT

INTRODUCTION: Loss of blood-brain barrier (BBB) integrity is hypothesised to be one of the earliest microvascular signs of Alzheimer's disease (AD). Existing BBB integrity imaging methods involve contrast agents or ionising radiation, and pose limitations in terms of cost and logistics. Arterial spin labelling (ASL) perfusion MRI has been recently adapted to map the BBB permeability non-invasively. The DEveloping BBB-ASL as a non-Invasive Early biomarker (DEBBIE) consortium aims to develop this modified ASL-MRI technique for patient-specific and robust BBB permeability assessments. This article outlines the study design of the DEBBIE cohorts focused on investigating the potential of BBB-ASL as an early biomarker for AD (DEBBIE-AD). METHODS AND ANALYSIS: DEBBIE-AD consists of a multicohort study enrolling participants with subjective cognitive decline, mild cognitive impairment and AD, as well as age-matched healthy controls, from 13 cohorts. The precision and accuracy of BBB-ASL will be evaluated in healthy participants. The clinical value of BBB-ASL will be evaluated by comparing results with both established and novel AD biomarkers. The DEBBIE-AD study aims to provide evidence of the ability of BBB-ASL to measure BBB permeability and demonstrate its utility in AD and AD-related pathologies. ETHICS AND DISSEMINATION: Ethics approval was obtained for 10 cohorts, and is pending for 3 cohorts. The results of the main trial and each of the secondary endpoints will be submitted for publication in a peer-reviewed journal.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Spin Labels , Magnetic Resonance Imaging/methods , Cognitive Dysfunction/diagnostic imaging , Biomarkers , Observational Studies as Topic
2.
Magn Reson Med ; 91(5): 1743-1760, 2024 May.
Article in English | MEDLINE | ID: mdl-37876299

ABSTRACT

The 2015 consensus statement published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group and the European Cooperation in Science and Technology ( COST) Action ASL in Dementia aimed to encourage the implementation of robust arterial spin labeling (ASL) perfusion MRI for clinical applications and promote consistency across scanner types, sites, and studies. Subsequently, the recommended 3D pseudo-continuous ASL sequence has been implemented by most major MRI manufacturers. However, ASL remains a rapidly and widely developing field, leading inevitably to further divergence of the technique and its associated terminology, which could cause confusion and hamper research reproducibility. On behalf of the ISMRM Perfusion Study Group, and as part of the ISMRM Open Science Initiative for Perfusion Imaging (OSIPI), the ASL Lexicon Task Force has been working on the development of an ASL Lexicon and Reporting Recommendations for perfusion imaging and analysis, aiming to (1) develop standardized, consensus nomenclature and terminology for the broad range of ASL imaging techniques and parameters, as well as for the physiological constants required for quantitative analysis; and (2) provide a community-endorsed recommendation of the imaging parameters that we encourage authors to include when describing ASL methods in scientific reports/papers. In this paper, the sequences and parameters in (pseudo-)continuous ASL, pulsed ASL, velocity-selective ASL, and multi-timepoint ASL for brain perfusion imaging are included. However, the content of the lexicon is not intended to be limited to these techniques, and this paper provides the foundation for a growing online inventory that will be extended by the community as further methods and improvements are developed and established.


Subject(s)
Brain , Magnetic Resonance Imaging , Reproducibility of Results , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Perfusion Imaging/methods , Spin Labels , Cerebrovascular Circulation/physiology , Magnetic Resonance Angiography/methods , Perfusion
3.
ArXiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-37744469

ABSTRACT

The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS.

4.
J Alzheimers Dis ; 93(4): 1211-1221, 2023.
Article in English | MEDLINE | ID: mdl-37182871

ABSTRACT

BACKGROUND: Perfusion imaging has the potential to identify neurodegenerative disorders in a preclinical stage. However, to correctly interpret perfusion-derived parameters, the impact of perfusion modifiers should be evaluated. OBJECTIVE: In this systematic review, the impact of acute and chronic intake of four acetylcholinesterase inhibitors (AChEIs) on cerebral perfusion in adults was investigated: physostigmine, donepezil, galantamine, and rivastigmine. RESULTS: Chronic AChEI treatment results in an increase of cerebral perfusion in treatment-responsive patients with Alzheimer's disease, dementia with Lewy bodies, and Parkinson's disease dementia in the frontal, parietal, temporal, and occipital lobes, as well as the cingulate gyrus. These effects appear to be temporary, dose-related, and consistent across populations and different AChEI types. On the contrary, further perfusion decline was reported in patients not receiving AChEIs or not responding to the treatment. CONCLUSION: AChEIs appear to be a potential perfusion modifier in neurodegenerative patients. More research focused on quantitative perfusion in both patients with and without a cholinergic deficit is needed to draw conclusions on whether AChEI intake should be considered when analyzing perfusion data.


Subject(s)
Alzheimer Disease , Dementia , Parkinson Disease , Humans , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Acetylcholinesterase , Dementia/drug therapy , Piperidines/therapeutic use , Indans/therapeutic use , Phenylcarbamates/therapeutic use , Parkinson Disease/drug therapy , Rivastigmine/therapeutic use , Alzheimer Disease/drug therapy , Galantamine/pharmacology , Galantamine/therapeutic use , Cognition , Perfusion , Cerebrovascular Circulation
5.
J Magn Reson Imaging ; 57(6): 1676-1695, 2023 06.
Article in English | MEDLINE | ID: mdl-36912262

ABSTRACT

Preoperative clinical MRI protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this second part, we review magnetic resonance spectroscopy (MRS), chemical exchange saturation transfer (CEST), susceptibility-weighted imaging (SWI), MRI-PET, MR elastography (MRE), and MR-based radiomics applications. The first part of this review addresses dynamic susceptibility contrast (DSC) and dynamic contrast-enhanced (DCE) MRI, arterial spin labeling (ASL), diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting (MRF). EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.


Subject(s)
Brain Neoplasms , Glioma , Magnetic Resonance Imaging , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Contrast Media , Glioma/diagnostic imaging , Glioma/surgery , Glioma/pathology , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Preoperative Period
6.
J Magn Reson Imaging ; 57(6): 1655-1675, 2023 06.
Article in English | MEDLINE | ID: mdl-36866773

ABSTRACT

Preoperative clinical magnetic resonance imaging (MRI) protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation or lack thereof. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this first part, we discuss dynamic susceptibility contrast and dynamic contrast-enhanced MRI, arterial spin labeling, diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting. The second part of this review addresses magnetic resonance spectroscopy, chemical exchange saturation transfer, susceptibility-weighted imaging, MRI-PET, MR elastography, and MR-based radiomics applications. Evidence Level: 3 Technical Efficacy: Stage 2.


Subject(s)
Brain Neoplasms , Glioma , Humans , Magnetic Resonance Imaging/methods , Glioma/diagnostic imaging , Glioma/surgery , Glioma/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Magnetic Resonance Spectroscopy/methods , Diffusion Magnetic Resonance Imaging
7.
Sci Data ; 9(1): 543, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36068231

ABSTRACT

Arterial spin labeling (ASL) is a non-invasive MRI technique that allows for quantitative measurement of cerebral perfusion. Incomplete or inaccurate reporting of acquisition parameters complicates quantification, analysis, and sharing of ASL data, particularly for studies across multiple sites, platforms, and ASL methods. There is a strong need for standardization of ASL data storage, including acquisition metadata. Recently, ASL-BIDS, the BIDS extension for ASL, was developed and released in BIDS 1.5.0. This manuscript provides an overview of the development and design choices of this first ASL-BIDS extension, which is mainly aimed at clinical ASL applications. Discussed are the structure of the ASL data, focussing on storage order of the ASL time series and implementation of calibration approaches, unit scaling, ASL-related BIDS fields, and storage of the labeling plane information. Additionally, an overview of ASL-BIDS compatible conversion and ASL analysis software and ASL example datasets in BIDS format is provided. We anticipate that large-scale adoption of ASL-BIDS will improve the reproducibility of ASL research.


Subject(s)
Brain , Magnetic Resonance Imaging , Neuroimaging , Humans , Brain/diagnostic imaging , Magnetic Resonance Imaging/standards , Neuroimaging/methods , Reproducibility of Results , Spin Labels
9.
Front Radiol ; 2: 929533, 2022.
Article in English | MEDLINE | ID: mdl-37492666

ABSTRACT

Arterial spin labeling (ASL) is a non-invasive and cost-effective MRI technique for brain perfusion measurements. While it has developed into a robust technique for scientific and clinical use, its image processing can still be daunting. The 2019 Ann Arbor ISMRM ASL working group established that education is one of the main areas that can accelerate the use of ASL in research and clinical practice. Specifically, the post-acquisition processing of ASL images and their preparation for region-of-interest or voxel-wise statistical analyses is a topic that has not yet received much educational attention. This educational review is aimed at those with an interest in ASL image processing and analysis. We provide summaries of all typical ASL processing steps on both single-subject and group levels. The readers are assumed to have a basic understanding of cerebral perfusion (patho) physiology; a basic level of programming or image analysis is not required. Starting with an introduction of the physiology and MRI technique behind ASL, and how they interact with the image processing, we present an overview of processing pipelines and explain the specific ASL processing steps. Example video and image illustrations of ASL studies of different cases, as well as model calculations, help the reader develop an understanding of which processing steps to check for their own analyses. Some of the educational content can be extrapolated to the processing of other MRI data. We anticipate that this educational review will help accelerate the application of ASL MRI for clinical brain research.

10.
MAGMA ; 35(1): 163-186, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34919195

ABSTRACT

Cancer therapy for both central nervous system (CNS) and non-CNS tumors has been previously associated with transient and long-term cognitive deterioration, commonly referred to as 'chemo fog'. This therapy-related damage to otherwise normal-appearing brain tissue is reported using post-mortem neuropathological analysis. Although the literature on monitoring therapy effects on structural magnetic resonance imaging (MRI) is well established, such macroscopic structural changes appear relatively late and irreversible. Early quantitative MRI biomarkers of therapy-induced damage would potentially permit taking these treatment side effects into account, paving the way towards a more personalized treatment planning.This systematic review (PROSPERO number 224196) provides an overview of quantitative tomographic imaging methods, potentially identifying the adverse side effects of cancer therapy in normal-appearing brain tissue. Seventy studies were obtained from the MEDLINE and Web of Science databases. Studies reporting changes in normal-appearing brain tissue using MRI, PET, or SPECT quantitative biomarkers, related to radio-, chemo-, immuno-, or hormone therapy for any kind of solid, cystic, or liquid tumor were included. The main findings of the reviewed studies were summarized, providing also the risk of bias of each study assessed using a modified QUADAS-2 tool. For each imaging method, this review provides the methodological background, and the benefits and shortcomings of each method from the imaging perspective. Finally, a set of recommendations is proposed to support future research.


Subject(s)
Cognition Disorders , Neoplasms , Brain/diagnostic imaging , Brain/pathology , Humans , Magnetic Resonance Imaging , Neoplasms/diagnostic imaging , Neoplasms/drug therapy
11.
Hum Brain Mapp ; 42(7): 1945-1951, 2021 05.
Article in English | MEDLINE | ID: mdl-33522661

ABSTRACT

Having the means to share research data openly is essential to modern science. For human research, a key aspect in this endeavor is obtaining consent from participants, not just to take part in a study, which is a basic ethical principle, but also to share their data with the scientific community. To ensure that the participants' privacy is respected, national and/or supranational regulations and laws are in place. It is, however, not always clear to researchers what the implications of those are, nor how to comply with them. The Open Brain Consent (https://open-brain-consent.readthedocs.io) is an international initiative that aims to provide researchers in the brain imaging community with information about data sharing options and tools. We present here a short history of this project and its latest developments, and share pointers to consent forms, including a template consent form that is compliant with the EU general data protection regulation. We also share pointers to an associated data user agreement that is not only useful in the EU context, but also for any researchers dealing with personal (clinical) data elsewhere.


Subject(s)
Brain/diagnostic imaging , Information Dissemination , Informed Consent , Neuroimaging , Research Subjects , Humans , Information Dissemination/ethics , Informed Consent/ethics , Neuroimaging/ethics
12.
J Med Biol Eng ; 41(2): 115-125, 2021.
Article in English | MEDLINE | ID: mdl-33293909

ABSTRACT

Purpose: There is an annual incidence of 50,000 glioma cases in Europe. The optimal treatment strategy is highly personalised, depending on tumour type, grade, spatial localization, and the degree of tissue infiltration. In research settings, advanced magnetic resonance imaging (MRI) has shown great promise as a tool to inform personalised treatment decisions. However, the use of advanced MRI in clinical practice remains scarce due to the downstream effects of siloed glioma imaging research with limited representation of MRI specialists in established consortia; and the associated lack of available tools and expertise in clinical settings. These shortcomings delay the translation of scientific breakthroughs into novel treatment strategy. As a response we have developed the network "Glioma MR Imaging 2.0" (GliMR) which we present in this article. Methods: GliMR aims to build a pan-European and multidisciplinary network of experts and accelerate the use of advanced MRI in glioma beyond the current "state-of-the-art" in glioma imaging. The Action Glioma MR Imaging 2.0 (GliMR) was granted funding by the European Cooperation in Science and Technology (COST) in June 2019. Results: GliMR's first grant period ran from September 2019 to April 2020, during which several meetings were held and projects were initiated, such as reviewing the current knowledge on advanced MRI; developing a General Data Protection Regulation (GDPR) compliant consent form; and setting up the website. Conclusion: The Action overcomes the pre-existing limitations of glioma research and is funded until September 2023. New members will be accepted during its entire duration.

13.
Neuroimage ; 219: 117031, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32526385

ABSTRACT

Arterial spin labeling (ASL) has undergone significant development since its inception, with a focus on improving standardization and reproducibility of its acquisition and quantification. In a community-wide effort towards robust and reproducible clinical ASL image processing, we developed the software package ExploreASL, allowing standardized analyses across centers and scanners. The procedures used in ExploreASL capitalize on published image processing advancements and address the challenges of multi-center datasets with scanner-specific processing and artifact reduction to limit patient exclusion. ExploreASL is self-contained, written in MATLAB and based on Statistical Parameter Mapping (SPM) and runs on multiple operating systems. To facilitate collaboration and data-exchange, the toolbox follows several standards and recommendations for data structure, provenance, and best analysis practice. ExploreASL was iteratively refined and tested in the analysis of >10,000 ASL scans using different pulse-sequences in a variety of clinical populations, resulting in four processing modules: Import, Structural, ASL, and Population that perform tasks, respectively, for data curation, structural and ASL image processing and quality control, and finally preparing the results for statistical analyses on both single-subject and group level. We illustrate ExploreASL processing results from three cohorts: perinatally HIV-infected children, healthy adults, and elderly at risk for neurodegenerative disease. We show the reproducibility for each cohort when processed at different centers with different operating systems and MATLAB versions, and its effects on the quantification of gray matter cerebral blood flow. ExploreASL facilitates the standardization of image processing and quality control, allowing the pooling of cohorts which may increase statistical power and discover between-group perfusion differences. Ultimately, this workflow may advance ASL for wider adoption in clinical studies, trials, and practice.


Subject(s)
Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Angiography/methods , Algorithms , Cerebrovascular Circulation/physiology , Humans , Reproducibility of Results , Signal-To-Noise Ratio , Software , Spin Labels
14.
Magn Reson Med ; 84(5): 2523-2536, 2020 11.
Article in English | MEDLINE | ID: mdl-32424947

ABSTRACT

PURPOSE: To determine whether sacrificing part of the scan time of pseudo-continuous arterial spin labeling (PCASL) for measurement of the labeling efficiency and blood T1 is beneficial in terms of CBF quantification reliability. METHODS: In a simulation framework, 5-minute scan protocols with different scan time divisions between PCASL data acquisition and supporting measurements were evaluated in terms of CBF estimation variability across both noise and ground truth parameter realizations taken from the general population distribution. The entire simulation experiment was repeated for a single-post-labeling delay (PLD), multi-PLD, and free-lunch time-encoded (te-FL) PCASL acquisition strategy. Furthermore, a real data study was designed for preliminary validation. RESULTS: For the considered population statistics, measuring the labeling efficiency and the blood T1 proved beneficial in terms of CBF estimation variability for any distribution of the 5-minute scan time compared to only acquiring ASL data. Compared to single-PLD PCASL without support measurements as recommended in the consensus statement, a 26%, 33%, and 42% reduction in relative CBF estimation variability was found for optimal combinations of supporting measurements with single-PLD, free-lunch, and multi-PLD PCASL data acquisition, respectively. The benefit of taking the individual variation of blood T1 into account was also demonstrated in the real data experiment. CONCLUSIONS: Spending time to measure the labeling efficiency and the blood T1 instead of acquiring more averages of the PCASL data proves to be advisable for robust CBF quantification in the general population.


Subject(s)
Brain , Cerebrovascular Circulation , Arteries , Brain/diagnostic imaging , Humans , Magnetic Resonance Angiography , Reproducibility of Results , Spin Labels
15.
NMR Biomed ; 33(12): e4182, 2020 12.
Article in English | MEDLINE | ID: mdl-31736223

ABSTRACT

Multi-post-labeling-delay pseudo-continuous arterial spin labeling (multi-PLD PCASL) allows for absolute quantification of the cerebral blood flow (CBF) as well as the arterial transit time (ATT). Estimating these perfusion parameters from multi-PLD PCASL data is a non-linear inverse problem, which is commonly tackled by fitting the single-compartment model (SCM) for PCASL, with CBF and ATT as free parameters. The longitudinal relaxation time of tissue T1t is an important parameter in this model, as it governs the decay of the perfusion signal entirely upon entry in the imaging voxel. Conventionally, T1t is fixed to a population average. This approach can cause CBF quantification errors, as T1t can vary significantly inter- and intra-subject. This study compares the impact on CBF quantification, in terms of accuracy and precision, of either fixing T1t , the conventional approach, or estimating it alongside CBF and ATT. It is shown that the conventional approach can cause a significant bias in CBF. Indeed, simulation experiments reveal that if T1t is fixed to a value that is 10% off its true value, this may already result in a bias of 15% in CBF. On the other hand, as is shown by both simulation and real data experiments, estimating T1t along with CBF and ATT results in a loss of CBF precision of the same order, even if the experiment design is optimized for the latter estimation problem. Simulation experiments suggest that an optimal balance between accuracy and precision of CBF estimation from multi-PLD PCASL data can be expected when using the two-parameter estimator with a fixed T1t value between population averages of T1t and the longitudinal relaxation time of blood T1b .


Subject(s)
Arteries/physiology , Cerebrovascular Circulation/physiology , Spin Labels , Adult , Computer Simulation , Female , Gray Matter/blood supply , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Research Design , Signal-To-Noise Ratio , Young Adult
16.
PLoS One ; 13(11): e0207015, 2018.
Article in English | MEDLINE | ID: mdl-30403757

ABSTRACT

To overcome long acquisition times of Chemical Shift Imaging (CSI), a new Magnetic Resonance Spectroscopic Imaging (MRSI) technique called Reduction of Acquisition time by Partition of the sIgnal Decay in Spectroscopic Imaging (RAPID-SI) using blipped phase encoding gradients inserted during signal acquisition was developed. To validate the results using RAPID-SI and to demonstrate its usefulness in terms of acquisition time and data quantification; simulations, phantom and in vivo studies were conducted, and the results were compared to standard CSI. The method was based upon the partition of a magnetic resonance spectroscopy (MRS) signal into sequential sub-signals encoded using blipped phase encoding gradients inserted during signal acquisition at a constant time interval. The RAPID-SI technique was implemented on a clinical 3 T Siemens scanner to demonstrate its clinical utility. Acceleration of data collection was performed by inserting R (R = acceleration factor) blipped gradients along a given spatial direction during data acquisition. Compared to CSI, RAPID-SI reduced acquisition time by the acceleration factor R. For example, a 2D 16x16 data set acquired in about 17 min with CSI, was reduced to approximately 2 min with the RAPID-SI (R = 8). While the SNR of the acquired RAPID-SI signal was lower compared to CSI by approximately the factor √R, it can be improved after data pre-processing and reconstruction. Compared to CSI, RAPID-SI reduces acquisition time, while preserving metabolites information. Furthermore, the method is flexible and could be combined with other acceleration methods such as Parallel Imaging.


Subject(s)
Magnetic Resonance Imaging/methods , Algorithms , Brain/diagnostic imaging , Humans , Image Interpretation, Computer-Assisted , Signal-To-Noise Ratio
17.
J Cereb Blood Flow Metab ; 38(9): 1418-1437, 2018 09.
Article in English | MEDLINE | ID: mdl-28393659

ABSTRACT

Quantitative measurements of brain perfusion are influenced by perfusion-modifiers. Standardization of measurement conditions and correction for important modifiers is essential to improve accuracy and to facilitate the interpretation of perfusion-derived parameters. An extensive literature search was carried out for factors influencing quantitative measurements of perfusion in the human brain unrelated to medication use. A total of 58 perfusion modifiers were categorized into four groups. Several factors (e.g., caffeine, aging, and blood gases) were found to induce a considerable effect on brain perfusion that was consistent across different studies; for other factors, the modifying effect was found to be debatable, due to contradictory results or lack of evidence. Using the results of this review, we propose a standard operating procedure, based on practices already implemented in several research centers. Also, a theory of 'deep MRI physiotyping' is inferred from the combined knowledge of factors influencing brain perfusion as a strategy to reduce variance by taking both personal information and the presence or absence of perfusion modifiers into account. We hypothesize that this will allow to personalize the concept of normality, as well as to reach more rigorous and earlier diagnoses of brain disorders.


Subject(s)
Brain/blood supply , Cerebrovascular Circulation/physiology , Perfusion Imaging/methods , Perfusion Imaging/standards , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Multicenter Studies as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...