Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 111(41): 14657-62, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25267618

ABSTRACT

Ultrasensitive nanoparticle detection holds great potential for early-stage diagnosis of human diseases and for environmental monitoring. In this work, we report for the first time, to our knowledge, single nanoparticle detection by monitoring the beat frequency of split-mode Raman lasers in high-Q optical microcavities. We first demonstrate this method by controllably transferring single 50-nm-radius nanoparticles to and from the cavity surface using a fiber taper. We then realize real-time detection of single nanoparticles in an aqueous environment, with a record low detection limit of 20 nm in radius, without using additional techniques for laser noise suppression. Because Raman scattering occurs in most materials under practically any pump wavelength, this Raman laser-based sensing method not only removes the need for doping the microcavity with a gain medium but also loosens the requirement of specific wavelength bands for the pump lasers, thus representing a significant step toward practical microlaser sensors.

2.
Adv Mater ; 25(39): 5616-20, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-24303524

ABSTRACT

A new label-free sensing mechanism is demonstrated experimentally by monitoring the whispering-gallery mode broadening in microcavities. It is immune to both noise from the probe laser and environmental disturbances, and is able to remove the strict requirement for ultra-high-Q mode cavities for sensitive nanoparticle detection. This ability to sense nanoscale objects and biological analytes is particularly crucial for wide applications.


Subject(s)
Lentivirus/isolation & purification , Microtechnology/methods , Nanoparticles/analysis
3.
Opt Lett ; 38(11): 1802-4, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23722749

ABSTRACT

We study the stimulated Raman emission of a high-Q polydimethylsiloxane (PDMS)-coated silica microsphere on a silicon chip. In this hybrid structure, as the thickness of the PDMS coating increases, the spatial distribution of the whispering gallery modes moves inside the PDMS layer, and the light emission switches from silica Raman lasing to PDMS Raman lasing. The Raman shift of the PDMS Raman laser is measured at 2900 cm(-1), corresponding to the strongest Raman fingerprint of bulk PDMS material. The threshold for this PDMS Raman lasing is demonstrated to be as low as 1.3 mW. This type of Raman emission from a surface-coated high-Q microcavity not only provides a route for extending lasing wavelengths, but also shows potential for detecting specific analytes.


Subject(s)
Dimethylpolysiloxanes/chemistry , Lasers , Microspheres , Spectrum Analysis, Raman , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL