Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Immunol ; 25(1): 88-101, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38012415

ABSTRACT

Few cancers can be targeted efficiently by engineered T cell strategies. Here, we show that γδ T cell antigen receptor (γδ TCR)-mediated cancer metabolome targeting can be combined with targeting of cancer-associated stress antigens (such as NKG2D ligands or CD277) through the addition of chimeric co-receptors. This strategy overcomes suboptimal γ9δ2 TCR engagement of αß T cells engineered to express a defined γδ TCR (TEGs) and improves serial killing, proliferation and persistence of TEGs. In vivo, the NKG2D-CD28WT chimera enabled control only of liquid tumors, whereas the NKG2D-4-1BBCD28TM chimera prolonged persistence of TEGs and improved control of liquid and solid tumors. The CD277-targeting chimera (103-4-1BB) was the most optimal co-stimulation format, eradicating both liquid and solid tumors. Single-cell transcriptomic analysis revealed that NKG2D-4-1BBCD28TM and 103-4-1BB chimeras reprogram TEGs through NF-κB. Owing to competition with naturally expressed NKG2D in CD8+ TEGs, the NKG2D-4-1BBCD28TM chimera mainly skewed CD4+ TEGs toward adhesion, proliferation, cytotoxicity and less exhausted signatures, whereas the 103-4-1BB chimera additionally shaped the CD8+ subset toward a proliferative state.


Subject(s)
Neoplasms , T-Lymphocytes , Humans , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/metabolism , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Gene Expression Profiling
2.
Nat Biotechnol ; 41(1): 60-69, 2023 01.
Article in English | MEDLINE | ID: mdl-35879361

ABSTRACT

Extending the success of cellular immunotherapies against blood cancers to the realm of solid tumors will require improved in vitro models that reveal therapeutic modes of action at the molecular level. Here we describe a system, called BEHAV3D, developed to study the dynamic interactions of immune cells and patient cancer organoids by means of imaging and transcriptomics. We apply BEHAV3D to live-track >150,000 engineered T cells cultured with patient-derived, solid-tumor organoids, identifying a 'super engager' behavioral cluster comprising T cells with potent serial killing capacity. Among other T cell concepts we also study cancer metabolome-sensing engineered T cells (TEGs) and detect behavior-specific gene signatures that include a group of 27 genes with no previously described T cell function that are expressed by super engager killer TEGs. We further show that type I interferon can prime resistant organoids for TEG-mediated killing. BEHAV3D is a promising tool for the characterization of behavioral-phenotypic heterogeneity of cellular immunotherapies and may support the optimization of personalized solid-tumor-targeting cell therapies.


Subject(s)
Neoplasms , T-Lymphocytes , Humans , Neoplasms/genetics , Neoplasms/therapy , Immunotherapy/methods , Organoids/pathology
3.
Cell Rep ; 15(9): 1973-85, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27210746

ABSTRACT

Human Vγ9Vδ2 T cells respond to tumor cells by sensing elevated levels of phosphorylated intermediates of the dysregulated mevalonate pathway, which is translated into activating signals by the ubiquitously expressed butyrophilin A1 (BTN3A1) through yet unknown mechanisms. Here, we developed an unbiased, genome-wide screening method that identified RhoB as a critical mediator of Vγ9Vδ2 TCR activation in tumor cells. Our results show that Vγ9Vδ2 TCR activation is modulated by the GTPase activity of RhoB and its redistribution to BTN3A1. This is associated with cytoskeletal changes that directly stabilize BTN3A1 in the membrane, and the subsequent dissociation of RhoB from BTN3A1. Furthermore, phosphoantigen accumulation induces a conformational change in BTN3A1, rendering its extracellular domains recognizable by Vγ9Vδ2 TCRs. These complementary events provide further evidence for inside-out signaling as an essential step in the recognition of tumor cells by a Vγ9Vδ2 TCR.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta/metabolism , rhoB GTP-Binding Protein/metabolism , Actin Cytoskeleton/metabolism , Antigens/metabolism , Antigens, CD/chemistry , Antigens, CD/metabolism , Butyrophilins/chemistry , Butyrophilins/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Genetic Loci , HEK293 Cells , Humans , Lymphocyte Activation/immunology , Models, Biological , Neoplastic Stem Cells/metabolism , Phosphorylation , Polymorphism, Single Nucleotide/genetics , Protein Binding , Protein Conformation , Protein Multimerization , RNA, Small Interfering/metabolism
4.
Gene ; 586(1): 62-8, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27040980

ABSTRACT

Androgen-induced gene 1 (AIG1) is a transmembrane protein implicated with survival (its expression level was shown to correlate with the survival of patients suffering from hepatocellular carcinoma) and Ca(2+) signaling (over-expression of AIG1 increased transcription mediated by the Ca(2+)-dependent nuclear factor of activated T cells). We aimed to shed light on this less-studied protein and investigated its tissue expression, genomic organization, intracellular localization and membrane topology as well as its effects on cell death susceptibility and the Ca(2+) content of the endoplasmic reticulum. Immunoblotting of mouse tissues demonstrated highest expression of AIG1 in the liver, lung and heart. AIG1 has a complex genomic organization and expresses several splice variants in a tissue-dependent manner. Analyzing the topology of AIG1 in the ER membrane using a protease-protection assay suggested that AIG has five transmembrane domains with a luminal N- and cytosolic C-terminus and a hydrophobic stretch between the third and fourth membrane domain that does not cross the membrane. AIG1 over-expression slightly increased susceptibility to oxidative stress, which correlated with an increased ER Ca(2+) concentration in two different cell lines. Together, these results indicate that AIG1 plays a role in the control of the intracellular Ca(2+) concentration and cell death susceptibility.


Subject(s)
Calcium/metabolism , Cell Death , Endoplasmic Reticulum/metabolism , Membrane Proteins/genetics , Oxidative Stress , Alternative Splicing , Animals , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Female , Gene Expression , Male , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Organ Specificity , Protein Domains , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...