Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 93(11): 113525, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461558

ABSTRACT

The Multi-Monochromatic X-ray Imager (MMI) is a time-gated spectrometer used in implosion experiments at the OMEGA laser facility. From the data, electron temperature and density spatial distributions can be obtained at different implosion times. Previous MMI designs used Ar K-shell emission (3-6 keV) as a spectroscopic tracer and provided a spectral resolution of around 20 eV. However, Ar K-shell line emission becomes less useful at electron temperatures above 2 keV due to over-ionization. Kr K-shell (12-16 keV) has been shown to be an attractive alternative to diagnose hot implosion cores in recent publications. The purpose of this paper is to show a new point design that allows the MMI to detect this higher photon energy range with suitable spectral resolution. The algorithm used to find the optimal design couples a ray-tracing code and an exhaustive parameter space search. This algorithm may be useful as a tool to find optimal MMI designs for other purposes, i.e., other spectral regions for other spectroscopic tracers. The main change between the two designs is the replacement of the multi-layer mirror with a flat Bragg Ge (220) crystal. The final Kr K-shell MMI design has a photon energy range from 12 to 16.1 keV.

2.
Rev Sci Instrum ; 93(9): 093517, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182496

ABSTRACT

K-shell x-ray emission spectroscopy is a standard tool used to diagnose the plasma conditions created in high-energy-density physics experiments. In the simplest approach, the emissivity-weighted average temperature of the plasma can be extracted by fitting an emission spectrum to a single temperature condition. It is known, however, that a range of plasma conditions can contribute to the measured spectra due to a combination of the evolution of the sample and spatial gradients. In this work, we define a parameterized model of the temperature distribution and use Markov Chain Monte Carlo sampling of the input parameters, yielding uncertainties in the fit parameters to assess the uniqueness of the inferred temperature distribution. We present the analysis of time-integrated S and Fe x-ray spectroscopic data from the Orion laser facility and demonstrate that while fitting each spectral region to a single temperature yields two different temperatures, both spectra can be fit simultaneously with a single temperature distribution. We find that fitting both spectral regions together requires a maximum temperature of 1310-70 +90 eV with significant contributions from temperatures down to 200 eV.

SELECTION OF CITATIONS
SEARCH DETAIL
...