Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Mach Learn ; 113(5): 2655-2674, 2024.
Article in English | MEDLINE | ID: mdl-38708086

ABSTRACT

With the rapid growth of memory and computing power, datasets are becoming increasingly complex and imbalanced. This is especially severe in the context of clinical data, where there may be one rare event for many cases in the majority class. We introduce an imbalanced classification framework, based on reinforcement learning, for training extremely imbalanced data sets, and extend it for use in multi-class settings. We combine dueling and double deep Q-learning architectures, and formulate a custom reward function and episode-training procedure, specifically with the capability of handling multi-class imbalanced training. Using real-world clinical case studies, we demonstrate that our proposed framework outperforms current state-of-the-art imbalanced learning methods, achieving more fair and balanced classification, while also significantly improving the prediction of minority classes. Supplementary Information: The online version contains supplementary material available at 10.1007/s10994-023-06481-z.

2.
BMC Med Inform Decis Mak ; 24(1): 117, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702692

ABSTRACT

BACKGROUND: Irregular time series (ITS) are common in healthcare as patient data is recorded in an electronic health record (EHR) system as per clinical guidelines/requirements but not for research and depends on a patient's health status. Due to irregularity, it is challenging to develop machine learning techniques to uncover vast intelligence hidden in EHR big data, without losing performance on downstream patient outcome prediction tasks. METHODS: In this paper, we propose Perceiver, a cross-attention-based transformer variant that is computationally efficient and can handle long sequences of time series in healthcare. We further develop continuous patient state attention models, using Perceiver and transformer to deal with ITS in EHR. The continuous patient state models utilise neural ordinary differential equations to learn patient health dynamics, i.e., patient health trajectory from observed irregular time steps, which enables them to sample patient state at any time. RESULTS: The proposed models' performance on in-hospital mortality prediction task on PhysioNet-2012 challenge and MIMIC-III datasets is examined. Perceiver model either outperforms or performs at par with baselines, and reduces computations by about nine times when compared to the transformer model, with no significant loss of performance. Experiments to examine irregularity in healthcare reveal that continuous patient state models outperform baselines. Moreover, the predictive uncertainty of the model is used to refer extremely uncertain cases to clinicians, which enhances the model's performance. Code is publicly available and verified at https://codeocean.com/capsule/4587224 . CONCLUSIONS: Perceiver presents a computationally efficient potential alternative for processing long sequences of time series in healthcare, and the continuous patient state attention models outperform the traditional and advanced techniques to handle irregularity in the time series. Moreover, the predictive uncertainty of the model helps in the development of transparent and trustworthy systems, which can be utilised as per the availability of clinicians.


Subject(s)
Electronic Health Records , Humans , Machine Learning , Hospital Mortality , Models, Theoretical
3.
NPJ Digit Med ; 7(1): 91, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609437

ABSTRACT

Accurate physical activity monitoring is essential to understand the impact of physical activity on one's physical health and overall well-being. However, advances in human activity recognition algorithms have been constrained by the limited availability of large labelled datasets. This study aims to leverage recent advances in self-supervised learning to exploit the large-scale UK Biobank accelerometer dataset-a 700,000 person-days unlabelled dataset-in order to build models with vastly improved generalisability and accuracy. Our resulting models consistently outperform strong baselines across eight benchmark datasets, with an F1 relative improvement of 2.5-130.9% (median 24.4%). More importantly, in contrast to previous reports, our results generalise across external datasets, cohorts, living environments, and sensor devices. Our open-sourced pre-trained models will be valuable in domains with limited labelled data or where good sampling coverage (across devices, populations, and activities) is hard to achieve.

4.
BMJ Open ; 14(4): e074604, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609314

ABSTRACT

RATIONALE: Intensive care units (ICUs) admit the most severely ill patients. Once these patients are discharged from the ICU to a step-down ward, they continue to have their vital signs monitored by nursing staff, with Early Warning Score (EWS) systems being used to identify those at risk of deterioration. OBJECTIVES: We report the development and validation of an enhanced continuous scoring system for predicting adverse events, which combines vital signs measured routinely on acute care wards (as used by most EWS systems) with a risk score of a future adverse event calculated on discharge from the ICU. DESIGN: A modified Delphi process identified candidate variables commonly available in electronic records as the basis for a 'static' score of the patient's condition immediately after discharge from the ICU. L1-regularised logistic regression was used to estimate the in-hospital risk of future adverse event. We then constructed a model of physiological normality using vital sign data from the day of hospital discharge. This is combined with the static score and used continuously to quantify and update the patient's risk of deterioration throughout their hospital stay. SETTING: Data from two National Health Service Foundation Trusts (UK) were used to develop and (externally) validate the model. PARTICIPANTS: A total of 12 394 vital sign measurements were acquired from 273 patients after ICU discharge for the development set, and 4831 from 136 patients in the validation cohort. RESULTS: Outcome validation of our model yielded an area under the receiver operating characteristic curve of 0.724 for predicting ICU readmission or in-hospital death within 24 hours. It showed an improved performance with respect to other competitive risk scoring systems, including the National EWS (0.653). CONCLUSIONS: We showed that a scoring system incorporating data from a patient's stay in the ICU has better performance than commonly used EWS systems based on vital signs alone. TRIAL REGISTRATION NUMBER: ISRCTN32008295.


Subject(s)
Patient Readmission , State Medicine , Humans , Hospital Mortality , Intensive Care Units , Critical Care
5.
Article in English | MEDLINE | ID: mdl-38512733

ABSTRACT

The design of neural networks typically involves trial-and-error, a time-consuming process for obtaining an optimal architecture, even for experienced researchers. Additionally, it is widely accepted that loss functions of deep neural networks are generally non-convex with respect to the parameters to be optimised. We propose the Layer-wise Convex Theorem to ensure that the loss is convex with respect to the parameters of a given layer, achieved by constraining each layer to be an overdetermined system of non-linear equations. Based on this theorem, we developed an end-to-end algorithm (the AutoNet) to automatically generate layer-wise convex networks (LCNs) for any given training set. We then demonstrate the performance of the AutoNet-generated LCNs (AutoNet-LCNs) compared to state-of-the-art models on three electrocardiogram (ECG) classification benchmark datasets, with further validation on two non-ECG benchmark datasets for more general tasks. The AutoNet-LCN was able to find networks customised for each dataset without manual fine-tuning under 2 GPU-hours, and the resulting networks outperformed the state-of-the-art models with fewer than 5% parameters on all the above five benchmark datasets. The efficiency and robustness of the AutoNet-LCN markedly reduce model discovery costs and enable efficient training of deep learning models in resource-constrained settings.

6.
J Infect ; 88(4): 106129, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431156

ABSTRACT

OBJECTIVES: Despite being prioritized during initial COVID-19 vaccine rollout, vulnerable individuals at high risk of severe COVID-19 (hospitalization, intensive care unit admission, or death) remain underrepresented in vaccine effectiveness (VE) studies. The RAVEN cohort study (NCT05047822) assessed AZD1222 (ChAdOx1 nCov-19) two-dose primary series VE in vulnerable populations. METHODS: Using the Oxford-Royal College of General Practitioners Clinical Informatics Digital Hub, linked to secondary care, death registration, and COVID-19 datasets in England, COVID-19 outcomes in 2021 were compared in vaccinated and unvaccinated individuals matched on age, sex, region, and multimorbidity. RESULTS: Over 4.5 million AZD1222 recipients were matched (mean follow-up ∼5 months); 68% were ≥50 years, 57% had high multimorbidity. Overall, high VE against severe COVID-19 was demonstrated, with lower VE observed in vulnerable populations. VE against hospitalization was higher in the lowest multimorbidity quartile (91.1%; 95% CI: 90.1, 92.0) than the highest quartile (80.4%; 79.7, 81.1), and among individuals ≥65 years, higher in the 'fit' (86.2%; 84.5, 87.6) than the frailest (71.8%; 69.3, 74.2). VE against hospitalization was lowest in immunosuppressed individuals (64.6%; 60.7, 68.1). CONCLUSIONS: Based on integrated and comprehensive UK health data, overall population-level VE with AZD1222 was high. VEs were notably lower in vulnerable groups, particularly the immunosuppressed.


Subject(s)
COVID-19 , Crows , Frailty , Humans , Animals , ChAdOx1 nCoV-19 , COVID-19 Vaccines , Frailty/epidemiology , Cohort Studies , Comorbidity
7.
Nat Commun ; 15(1): 1582, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383571

ABSTRACT

The lack of data democratization and information leakage from trained models hinder the development and acceptance of robust deep learning-based healthcare solutions. This paper argues that irreversible data encoding can provide an effective solution to achieve data democratization without violating the privacy constraints imposed on healthcare data and clinical models. An ideal encoding framework transforms the data into a new space where it is imperceptible to a manual or computational inspection. However, encoded data should preserve the semantics of the original data such that deep learning models can be trained effectively. This paper hypothesizes the characteristics of the desired encoding framework and then exploits random projections and random quantum encoding to realize this framework for dense and longitudinal or time-series data. Experimental evaluation highlights that models trained on encoded time-series data effectively uphold the information bottleneck principle and hence, exhibit lesser information leakage from trained models.

8.
Article in English | MEDLINE | ID: mdl-38421845

ABSTRACT

Natural Language Generation (NLG) accepts input data in the form of images, videos, or text and generates corresponding natural language text as output. Existing NLG methods mainly adopt a supervised approach and rely heavily on coupled data-to-text pairs. However, for many targeted scenarios and for non-English languages, sufficient quantities of labeled data are often not available. As a result, it is necessary to collect and label data-text pairs for training, which is both costly and time-consuming. To relax the dependency on labeled data of downstream tasks, we propose an intuitive and effective zero-shot learning framework, ZeroNLG, which can deal with multiple NLG tasks, including image-to-text (image captioning), video-to-text (video captioning), and text-to-text (neural machine translation), across English, Chinese, German, and French within a unified framework. ZeroNLG does not require any labeled downstream pairs for training. During training, ZeroNLG (i) projects different domains (across modalities and languages) to corresponding coordinates in a shared common latent space; (ii) bridges different domains by aligning their corresponding coordinates in this space; and (iii) builds an unsupervised multilingual auto-encoder to learn to generate text by reconstructing the input text given its coordinate in shared latent space. Consequently, during inference, based on the data-to-text pipeline, ZeroNLG can generate target sentences across different languages given the coordinate of input data in the common space. Within this unified framework, given visual (imaging or video) data as input, ZeroNLG can perform zero-shot visual captioning; given textual sentences as input, ZeroNLG can perform zero-shot machine translation. We present the results of extensive experiments on twelve NLG tasks, showing that, without using any labeled downstream pairs for training, ZeroNLG generates high-quality and "believable" outputs and significantly outperforms existing zero-shot methods. Our code and data are available at https://github.com/yangbang18/ZeroNLG.

9.
NPJ Digit Med ; 7(1): 33, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347090

ABSTRACT

Digital measures of health status captured during daily life could greatly augment current in-clinic assessments for rheumatoid arthritis (RA), to enable better assessment of disease progression and impact. This work presents results from weaRAble-PRO, a 14-day observational study, which aimed to investigate how digital health technologies (DHT), such as smartphones and wearables, could augment patient reported outcomes (PRO) to determine RA status and severity in a study of 30 moderate-to-severe RA patients, compared to 30 matched healthy controls (HC). Sensor-based measures of health status, mobility, dexterity, fatigue, and other RA specific symptoms were extracted from daily iPhone guided tests (GT), as well as actigraphy and heart rate sensor data, which was passively recorded from patients' Apple smartwatch continuously over the study duration. We subsequently developed a machine learning (ML) framework to distinguish RA status and to estimate RA severity. It was found that daily wearable sensor-outcomes robustly distinguished RA from HC participants (F1, 0.807). Furthermore, by day 7 of the study (half-way), a sufficient volume of data had been collected to reliably capture the characteristics of RA participants. In addition, we observed that the detection of RA severity levels could be improved by augmenting standard patient reported outcomes with sensor-based features (F1, 0.833) in comparison to using PRO assessments alone (F1, 0.759), and that the combination of modalities could reliability measure continuous RA severity, as determined by the clinician-assessed RAPID-3 score at baseline (r2, 0.692; RMSE, 1.33). The ability to measure the impact of the disease during daily life-through objective and remote digital outcomes-paves the way forward to enable the development of more patient-centric and personalised measurements for use in RA clinical trials.

10.
Lancet Digit Health ; 6(2): e93-e104, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38278619

ABSTRACT

BACKGROUND: Multicentre training could reduce biases in medical artificial intelligence (AI); however, ethical, legal, and technical considerations can constrain the ability of hospitals to share data. Federated learning enables institutions to participate in algorithm development while retaining custody of their data but uptake in hospitals has been limited, possibly as deployment requires specialist software and technical expertise at each site. We previously developed an artificial intelligence-driven screening test for COVID-19 in emergency departments, known as CURIAL-Lab, which uses vital signs and blood tests that are routinely available within 1 h of a patient's arrival. Here we aimed to federate our COVID-19 screening test by developing an easy-to-use embedded system-which we introduce as full-stack federated learning-to train and evaluate machine learning models across four UK hospital groups without centralising patient data. METHODS: We supplied a Raspberry Pi 4 Model B preloaded with our federated learning software pipeline to four National Health Service (NHS) hospital groups in the UK: Oxford University Hospitals NHS Foundation Trust (OUH; through the locally linked research University, University of Oxford), University Hospitals Birmingham NHS Foundation Trust (UHB), Bedfordshire Hospitals NHS Foundation Trust (BH), and Portsmouth Hospitals University NHS Trust (PUH). OUH, PUH, and UHB participated in federated training, training a deep neural network and logistic regressor over 150 rounds to form and calibrate a global model to predict COVID-19 status, using clinical data from patients admitted before the pandemic (COVID-19-negative) and testing positive for COVID-19 during the first wave of the pandemic. We conducted a federated evaluation of the global model for admissions during the second wave of the pandemic at OUH, PUH, and externally at BH. For OUH and PUH, we additionally performed local fine-tuning of the global model using the sites' individual training data, forming a site-tuned model, and evaluated the resultant model for admissions during the second wave of the pandemic. This study included data collected between Dec 1, 2018, and March 1, 2021; the exact date ranges used varied by site. The primary outcome was overall model performance, measured as the area under the receiver operating characteristic curve (AUROC). Removable micro secure digital (microSD) storage was destroyed on study completion. FINDINGS: Clinical data from 130 941 patients (1772 COVID-19-positive), routinely collected across three hospital groups (OUH, PUH, and UHB), were included in federated training. The evaluation step included data from 32 986 patients (3549 COVID-19-positive) attending OUH, PUH, or BH during the second wave of the pandemic. Federated training of a global deep neural network classifier improved upon performance of models trained locally in terms of AUROC by a mean of 27·6% (SD 2·2): AUROC increased from 0·574 (95% CI 0·560-0·589) at OUH and 0·622 (0·608-0·637) at PUH using the locally trained models to 0·872 (0·862-0·882) at OUH and 0·876 (0·865-0·886) at PUH using the federated global model. Performance improvement was smaller for a logistic regression model, with a mean increase in AUROC of 13·9% (0·5%). During federated external evaluation at BH, AUROC for the global deep neural network model was 0·917 (0·893-0·942), with 89·7% sensitivity (83·6-93·6) and 76·6% specificity (73·9-79·1). Site-specific tuning of the global model did not significantly improve performance (change in AUROC <0·01). INTERPRETATION: We developed an embedded system for federated learning, using microcomputing to optimise for ease of deployment. We deployed full-stack federated learning across four UK hospital groups to develop a COVID-19 screening test without centralising patient data. Federation improved model performance, and the resultant global models were generalisable. Full-stack federated learning could enable hospitals to contribute to AI development at low cost and without specialist technical expertise at each site. FUNDING: The Wellcome Trust, University of Oxford Medical and Life Sciences Translational Fund.


Subject(s)
COVID-19 , Secondary Care , Humans , Artificial Intelligence , Privacy , State Medicine , COVID-19/diagnosis , Hospitals , United Kingdom
11.
IEEE Rev Biomed Eng ; 17: 98-117, 2024.
Article in English | MEDLINE | ID: mdl-37022834

ABSTRACT

Innovations in digital health and machine learning are changing the path of clinical health and care. People from different geographical locations and cultural backgrounds can benefit from the mobility of wearable devices and smartphones to monitor their health ubiquitously. This paper focuses on reviewing the digital health and machine learning technologies used in gestational diabetes - a subtype of diabetes that occurs during pregnancy. This paper reviews sensor technologies used in blood glucose monitoring devices, digital health innovations and machine learning models for gestational diabetes monitoring and management, in clinical and commercial settings, and discusses future directions. Despite one in six mothers having gestational diabetes, digital health applications were underdeveloped, especially the techniques that can be deployed in clinical practice. There is an urgent need to (1) develop clinically interpretable machine learning methods for patients with gestational diabetes, assisting health professionals with treatment, monitoring, and risk stratification before, during and after their pregnancies; (2) adapt and develop clinically-proven devices for patient self-management of health and well-being at home settings ("virtual ward" and virtual consultation), thereby improving clinical outcomes by facilitating timely intervention; and (3) ensure innovations are affordable and sustainable for all women with different socioeconomic backgrounds and clinical resources.


Subject(s)
Diabetes, Gestational , Pregnancy , Humans , Female , Diabetes, Gestational/diagnosis , Diabetes, Gestational/therapy , Blood Glucose , Blood Glucose Self-Monitoring/methods , Digital Health , Machine Learning
12.
IEEE Trans Pattern Anal Mach Intell ; 46(5): 3305-3320, 2024 May.
Article in English | MEDLINE | ID: mdl-38096090

ABSTRACT

Electrocardiography (ECG) is a non-invasive tool for predicting cardiovascular diseases (CVDs). Current ECG-based diagnosis systems show promising performance owing to the rapid development of deep learning techniques. However, the label scarcity problem, the co-occurrence of multiple CVDs and the poor performance on unseen datasets greatly hinder the widespread application of deep learning-based models. Addressing them in a unified framework remains a significant challenge. To this end, we propose a multi-label semi-supervised model (ECGMatch) to recognize multiple CVDs simultaneously with limited supervision. In the ECGMatch, an ECGAugment module is developed for weak and strong ECG data augmentation, which generates diverse samples for model training. Subsequently, a hyperparameter-efficient framework with neighbor agreement modeling and knowledge distillation is designed for pseudo-label generation and refinement, which mitigates the label scarcity problem. Finally, a label correlation alignment module is proposed to capture the co-occurrence information of different CVDs within labeled samples and propagate this information to unlabeled samples. Extensive experiments on four datasets and three protocols demonstrate the effectiveness and stability of the proposed model, especially on unseen datasets. As such, this model can pave the way for diagnostic systems that achieve robust performance on multi-label CVDs prediction with limited supervision.


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/diagnostic imaging , Algorithms , Supervised Machine Learning , Electrocardiography
13.
IEEE Rev Biomed Eng ; 17: 180-196, 2024.
Article in English | MEDLINE | ID: mdl-37186539

ABSTRACT

Heart rate variability (HRV) is an important metric with a variety of applications in clinical situations such as cardiovascular diseases, diabetes mellitus, and mental health. HRV data can be potentially obtained from electrocardiography and photoplethysmography signals, then computational techniques such as signal filtering and data segmentation are used to process the sampled data for calculating HRV measures. However, uncertainties arising from data acquisition, computational models, and physiological factors can lead to degraded signal quality and affect HRV analysis. Therefore, it is crucial to address these uncertainties and develop advanced models for HRV analysis. Although several reviews of HRV analysis exist, they primarily focus on clinical applications, trends in HRV methods, or specific aspects of uncertainties such as measurement noise. This paper provides a comprehensive review of uncertainties in HRV analysis, quantifies their impacts, and outlines potential solutions. To the best of our knowledge, this is the first study that presents a holistic review of uncertainties in HRV methods and quantifies their impacts on HRV measures from an engineer's perspective. This review is essential for developing robust and reliable models, and could serve as a valuable future reference in the field, particularly for dealing with uncertainties in HRV analysis.


Subject(s)
Cardiovascular Diseases , Electrocardiography , Humans , Heart Rate/physiology , Electrocardiography/methods , Photoplethysmography/methods
14.
IEEE Trans Biomed Eng ; 71(4): 1247-1256, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38039165

ABSTRACT

OBJECTIVE: Organ failure is a leading cause of mortality in hospitals, particularly in intensive care units. Predicting organ failure is crucial for clinical and social reasons. This study proposes a dual-keyless-attention (DuKA) model that enables interpretable predictions of organ failure using electronic health record (EHR) data. METHODS: Three modalities of medical data from EHR, namely diagnosis, procedure, and medications, are selected to predict three types of vital organ failures: heart failure, respiratory failure, and kidney failure. DuKA utilizes pre-trained embeddings of medical codes and combines them using a modality-wise attention module and a medical concept-wise attention module to enhance interpretation. Three organ failure tasks are addressed using two datasets to verify the effectiveness of DuKA. RESULTS: The proposed multi-modality DuKA model outperforms all reference and baseline models. The diagnosis history, particularly the presence of cachexia and previous organ failure, emerges as the most influential feature in organ failure prediction. CONCLUSIONS: DuKA offers competitive performance, straightforward model interpretations and flexibility in terms of input sources, as the input embeddings can be trained using different datasets and methods. SIGNIFICANCE: DuKA is a lightweight model that innovatively uses dual attention in a hierarchical way to fuse diagnosis, procedure and medication information for organ failure predictions. It also enhances disease comprehension and supports personalized treatment.


Subject(s)
Heart Failure , Humans , Intensive Care Units , Electronic Health Records
15.
IEEE J Biomed Health Inform ; 28(3): 1321-1330, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38109250

ABSTRACT

Recent advances in machine learning, particularly deep neural network architectures, have shown substantial promise in classifying and predicting cardiac abnormalities from electrocardiogram (ECG) data. Such data are rich in information content, typically in morphology and timing, due to the close correlation between cardiac function and the ECG. However, the ECG is usually not measured ubiquitously in a passive manner from consumer devices, and generally requires 'active' sampling whereby the user prompts a device to take an ECG measurement. Conversely, photoplethysmography (PPG) data are typically measured passively by consumer devices, and therefore available for long-period monitoring and suitable in duration for identifying transient cardiac events. However, classifying or predicting cardiac abnormalities from the PPG is very difficult, because it is a peripherally-measured signal. Hence, the use of the PPG for predictive inference is often limited to deriving physiological parameters (heart rate, breathing rate, etc.) or for obvious abnormalities in cardiac timing, such as atrial fibrillation/flutter ("palpitations"). This work aims to combine the best of both worlds: using continuously-monitored, near-ubiquitous PPG to identify periods of sufficient abnormality in the PPG such that prompting the user to take an ECG would be informative of cardiac risk. We propose a dual-convolutional-attention network (DCA-Net) to achieve this ECG-based PPG classification. With DCA-Net, we prove the plausibility of this concept on MIMIC Waveform Database with high performance level (AUROC 0.9 and AUPRC 0.7) and receive satisfactory result when testing the model on an independent dataset (AUROC 0.7 and AUPRC 0.6) which it is not perfectly-matched to the MIMIC dataset.


Subject(s)
Atrial Fibrillation , Signal Processing, Computer-Assisted , Humans , Photoplethysmography , Heart Rate/physiology , Electrocardiography
16.
NPJ Digit Med ; 6(1): 226, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042919

ABSTRACT

Deep neural networks have been integrated into the whole clinical decision procedure which can improve the efficiency of diagnosis and alleviate the heavy workload of physicians. Since most neural networks are supervised, their performance heavily depends on the volume and quality of available labels. However, few such labels exist for rare diseases (e.g., new pandemics). Here we report a medical multimodal large language model (Med-MLLM) for radiograph representation learning, which can learn broad medical knowledge (e.g., image understanding, text semantics, and clinical phenotypes) from unlabelled data. As a result, when encountering a rare disease, our Med-MLLM can be rapidly deployed and easily adapted to them with limited labels. Furthermore, our model supports medical data across visual modality (e.g., chest X-ray and CT) and textual modality (e.g., medical report and free-text clinical note); therefore, it can be used for clinical tasks that involve both visual and textual data. We demonstrate the effectiveness of our Med-MLLM by showing how it would perform using the COVID-19 pandemic "in replay". In the retrospective setting, we test the model on the early COVID-19 datasets; and in the prospective setting, we test the model on the new variant COVID-19-Omicron. The experiments are conducted on 1) three kinds of input data; 2) three kinds of downstream tasks, including disease reporting, diagnosis, and prognosis; 3) five COVID-19 datasets; and 4) three different languages, including English, Chinese, and Spanish. All experiments show that our model can make accurate and robust COVID-19 decision-support with little labelled data.

17.
Sensors (Basel) ; 23(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37765761

ABSTRACT

Tetanus is a life-threatening bacterial infection that is often prevalent in low- and middle-income countries (LMIC), Vietnam included. Tetanus affects the nervous system, leading to muscle stiffness and spasms. Moreover, severe tetanus is associated with autonomic nervous system (ANS) dysfunction. To ensure early detection and effective management of ANS dysfunction, patients require continuous monitoring of vital signs using bedside monitors. Wearable electrocardiogram (ECG) sensors offer a more cost-effective and user-friendly alternative to bedside monitors. Machine learning-based ECG analysis can be a valuable resource for classifying tetanus severity; however, using existing ECG signal analysis is excessively time-consuming. Due to the fixed-sized kernel filters used in traditional convolutional neural networks (CNNs), they are limited in their ability to capture global context information. In this work, we propose a 2D-WinSpatt-Net, which is a novel Vision Transformer that contains both local spatial window self-attention and global spatial self-attention mechanisms. The 2D-WinSpatt-Net boosts the classification of tetanus severity in intensive-care settings for LMIC using wearable ECG sensors. The time series imaging-continuous wavelet transforms-is transformed from a one-dimensional ECG signal and input to the proposed 2D-WinSpatt-Net. In the classification of tetanus severity levels, 2D-WinSpatt-Net surpasses state-of-the-art methods in terms of performance and accuracy. It achieves remarkable results with an F1 score of 0.88 ± 0.00, precision of 0.92 ± 0.02, recall of 0.85 ± 0.01, specificity of 0.96 ± 0.01, accuracy of 0.93 ± 0.02 and AUC of 0.90 ± 0.00.


Subject(s)
Tetanus , Humans , Developing Countries , Electrocardiography , Patients , Critical Care
18.
Sensors (Basel) ; 23(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37766044

ABSTRACT

Gestational diabetes mellitus (GDM) is a subtype of diabetes that develops during pregnancy. Managing blood glucose (BG) within the healthy physiological range can reduce clinical complications for women with gestational diabetes. The objectives of this study are to (1) develop benchmark glucose prediction models with long short-term memory (LSTM) recurrent neural network models using time-series data collected from the GDm-Health platform, (2) compare the prediction accuracy with published results, and (3) suggest an optimized clinical review schedule with the potential to reduce the overall number of blood tests for mothers with stable and within-range glucose measurements. A total of 190,396 BG readings from 1110 patients were used for model development, validation and testing under three different prediction schemes: 7 days of BG readings to predict the next 7 or 14 days and 14 days to predict 14 days. Our results show that the optimized BG schedule based on a 7-day observational window to predict the BG of the next 14 days achieved the accuracies of the root mean square error (RMSE) = 0.958 ± 0.007, 0.876 ± 0.003, 0.898 ± 0.003, 0.622 ± 0.003, 0.814 ± 0.009 and 0.845 ± 0.005 for the after-breakfast, after-lunch, after-dinner, before-breakfast, before-lunch and before-dinner predictions, respectively. This is the first machine learning study that suggested an optimized blood glucose monitoring frequency, which is 7 days to monitor the next 14 days based on the accuracy of blood glucose prediction. Moreover, the accuracy of our proposed model based on the fingerstick blood glucose test is on par with the prediction accuracies compared with the benchmark performance of one-hour prediction models using continuous glucose monitoring (CGM) readings. In conclusion, the stacked LSTM model is a promising approach for capturing the patterns in time-series data, resulting in accurate predictions of BG levels. Using a deep learning model with routine fingerstick glucose collection is a promising, predictable and low-cost solution for BG monitoring for women with gestational diabetes.


Subject(s)
Diabetes, Gestational , Pregnancy , Humans , Female , Diabetes, Gestational/diagnosis , Blood Glucose , Blood Glucose Self-Monitoring/methods , Memory, Short-Term , Glucose
19.
Nat Mach Intell ; 5(8): 884-894, 2023.
Article in English | MEDLINE | ID: mdl-37615031

ABSTRACT

As models based on machine learning continue to be developed for healthcare applications, greater effort is needed to ensure that these technologies do not reflect or exacerbate any unwanted or discriminatory biases that may be present in the data. Here we introduce a reinforcement learning framework capable of mitigating biases that may have been acquired during data collection. In particular, we evaluated our model for the task of rapidly predicting COVID-19 for patients presenting to hospital emergency departments and aimed to mitigate any site (hospital)-specific and ethnicity-based biases present in the data. Using a specialized reward function and training procedure, we show that our method achieves clinically effective screening performances, while significantly improving outcome fairness compared with current benchmarks and state-of-the-art machine learning methods. We performed external validation across three independent hospitals, and additionally tested our method on a patient intensive care unit discharge status task, demonstrating model generalizability.

20.
Sensors (Basel) ; 23(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37514865

ABSTRACT

An electronic health record (EHR) is a vital high-dimensional part of medical concepts. Discovering implicit correlations in the information of this data set and the research and informative aspects can improve the treatment and management process. The challenge of concern is the data sources' limitations in finding a stable model to relate medical concepts and use these existing connections. This paper presents Patient Forest, a novel end-to-end approach for learning patient representations from tree-structured data for readmission and mortality prediction tasks. By leveraging statistical features, the proposed model is able to provide an accurate and reliable classifier for predicting readmission and mortality. Experiments on MIMIC-III and eICU datasets demonstrate Patient Forest outperforms existing machine learning models, especially when the training data are limited. Additionally, a qualitative evaluation of Patient Forest is conducted by visualising the learnt representations in 2D space using the t-SNE, which further confirms the effectiveness of the proposed model in learning EHR representations.


Subject(s)
Electronic Health Records , Machine Learning , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...