Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Endocrinology ; 160(1): 38-54, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30364965

ABSTRACT

Glucocorticoids (GCs) are essential for stress adaptation, acting centrally and in the periphery. Corticotropin-releasing factor (CRF), a major regulator of adrenal GC synthesis, is produced in the paraventricular nucleus of the hypothalamus (PVH), which contains multiple neuroendocrine and preautonomic neurons. GCs may be involved in diverse regulatory mechanisms in the PVH, but the target genes of GCs are largely unexplored except for the CRF gene (Crh), a well-known target for GC negative feedback. Using a genome-wide RNA-sequencing analysis, we identified transcripts that changed in response to either high-dose corticosterone (Cort) exposure for 12 days (12-day high Cort), corticoid deprivation for 7 days (7-day ADX), or acute Cort administration. Among others, canonical GC target genes were upregulated prominently by 12-day high Cort. Crh was upregulated or downregulated most prominently by either 7-day ADX or 12-day high Cort, emphasizing the recognized feedback effects of GC on the hypothalamic-pituitary-adrenal (HPA) axis. Concomitant changes in vasopressin and apelin receptor gene expression are likely to contribute to HPA repression. In keeping with the pleotropic cellular actions of GCs, 7-day ADX downregulated numerous genes of a broad functional spectrum. The transcriptome response signature differed markedly between acute Cort injection and 12-day high Cort. Remarkably, six immediate early genes were upregulated 1 hour after Cort injection, which was confirmed by quantitative reverse transcription PCR and semiquantitative in situ hybridization. This study may provide a useful database for studying the regulatory mechanisms of GC-dependent gene expression and repression in the PVH.


Subject(s)
Corticosterone/metabolism , Genome , Glucocorticoids/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Transcription, Genetic , Animals , Apelin Receptors/genetics , Apelin Receptors/metabolism , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Glucocorticoids/genetics , Male , Pituitary-Adrenal System/metabolism , Rats , Rats, Wistar , Vasopressins/genetics , Vasopressins/metabolism
3.
Nat Genet ; 51(1): 151-162, 2019 01.
Article in English | MEDLINE | ID: mdl-30420649

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous disease caused by a variety of alterations in transcription factors, epigenetic regulators and signaling molecules. To determine how different mutant regulators establish AML subtype-specific transcriptional networks, we performed a comprehensive global analysis of cis-regulatory element activity and interaction, transcription factor occupancy and gene expression patterns in purified leukemic blast cells. Here, we focused on specific subgroups of subjects carrying mutations in genes encoding transcription factors (RUNX1, CEBPα), signaling molecules (FTL3-ITD, RAS) and the nuclear protein NPM1). Integrated analysis of these data demonstrates that each mutant regulator establishes a specific transcriptional and signaling network unrelated to that seen in normal cells, sustaining the expression of unique sets of genes required for AML growth and maintenance.


Subject(s)
Gene Expression Regulation, Leukemic/genetics , Gene Regulatory Networks/genetics , Leukemia, Myeloid, Acute/genetics , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Nucleophosmin , Signal Transduction/genetics , Transcription Factors/genetics , Young Adult
4.
Biochem Biophys Res Commun ; 307(3): 459-65, 2003 Aug 01.
Article in English | MEDLINE | ID: mdl-12893243

ABSTRACT

Centaurin-alpha(1) is a member of the family of ADP-ribosylation factors (ARF) GTPase activating proteins (GAPs), although ARF GAP activity has not yet been demonstrated. The human homologue, centaurin-alpha(1) functionally complements the ARF GAP activity of Gcs1 in yeast. Although Gcs1 is involved in the formation of actin filaments in vivo, the function of centaurin remains elusive. We have identified a number of novel centaurin-alpha(1) binding partners; including CKIalpha and nucleolin. In this report, we have focused on the interaction of centaurin-alpha(1) with PKC. All groups of PKC associate directly through their cysteine rich domains. Centaurin-alpha(1) is also a substrate for all PKC classes and we have identified the two sites of phosphorylation. This is the first report of a kinase that phosphorylates centaurin-alpha(1).


Subject(s)
Carrier Proteins/metabolism , Nerve Tissue Proteins/metabolism , Protein Kinase C/metabolism , Adaptor Proteins, Signal Transducing , Binding Sites , Carrier Proteins/chemistry , Isoenzymes/metabolism , Nerve Tissue Proteins/chemistry , Phosphorylation , Protein Kinase C/chemistry , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL