Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biochem J ; 480(24): 2037-2044, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38100320

ABSTRACT

Atypical protein kinase Cs (aPKCs) are part of the PKC family of protein kinases and are atypical because they don't respond to the canonical PKC activators diacylglycerol (DAG) and Ca2+. They are central to the organization of polarized cells and are deregulated in several cancers. aPKC recruitment to the plasma membrane compartment is crucial to their encounter with substrates associated with polarizing functions. However, in contrast with other PKCs, the mechanism by which atypical PKCs are recruited there has remained elusive until recently. Here, we bring aPKC into the fold, summarizing recent reports on the direct recruitment of aPKC to membranes, providing insight into seemingly discrepant findings and integrating them with existing literature.


Subject(s)
Protein Kinase C , Protein Kinase C/metabolism , Cell Membrane/metabolism
2.
J Biol Chem ; 299(7): 104847, 2023 07.
Article in English | MEDLINE | ID: mdl-37211093

ABSTRACT

Atypical PKCs are cell polarity kinases that operate at the plasma membrane where they function within multiple molecular complexes to contribute to the establishment and maintenance of polarity. In contrast to the classical and novel PKCs, atypical PKCs do not respond to diacylglycerol cues to bind the membrane compartment. Until recently, it was not clear how aPKCs are recruited; whether aPKCs can directly interact with membranes or whether they are dependent on other protein interactors to do so. Two recent studies identified the pseudosubstrate region and the C1 domain as direct membrane interaction modules; however, their relative importance and coupling are unknown. We combined molecular modeling and functional assays to show that the regulatory module of aPKCι, comprising the PB1 pseudosubstrate and C1 domains, forms a cooperative and spatially continuous invariant membrane interaction platform. Furthermore, we show the coordinated orientation of membrane-binding elements within the regulatory module requires a key PB1-C1 interfacial ß-strand (beta-strand linker). We show this element contains a highly conserved Tyr residue that can be phosphorylated and that negatively regulates the integrity of the regulatory module, leading to membrane release. We thus expose a hitherto unknown regulatory mechanism of aPKCι membrane binding and release during cell polarization.


Subject(s)
Cell Membrane , Protein Kinase C , Protein Processing, Post-Translational , Cell Membrane/metabolism , Phosphorylation , Protein Kinase C/metabolism , Tyrosine/metabolism , Humans , HEK293 Cells , Protein Binding , Mutation , Cell Polarity/physiology
3.
Cancer Res ; 82(9): 1762-1773, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35247890

ABSTRACT

Topoisomerase 2a (Topo2a)-dependent G2 arrest engenders faithful segregation of sister chromatids, yet in certain tumor cell lines where this arrest is dysfunctional, a PKCε-dependent failsafe pathway can be triggered. Here we elaborate on recent advances in understanding the underlying mechanisms associated with this G2 arrest by determining that p53-p21 signaling is essential for efficient arrest in cell lines, in patient-derived cells, and in colorectal cancer organoids. Regulation of this p53 axis required the SMC5/6 complex, which is distinct from the p53 pathways observed in the DNA damage response. Topo2a inhibition specifically during S phase did not trigger G2 arrest despite affecting completion of DNA replication. Moreover, in cancer cells reliant upon the alternative lengthening of telomeres (ALT) mechanism, a distinct form of Topo2a-dependent, p53-independent G2 arrest was found to be mediated by BLM and Chk1. Importantly, the previously described PKCε-dependent mitotic failsafe was engaged in hTERT-positive cells when Topo2a-dependent G2 arrest was dysfunctional and where p53 was absent, but not in cells dependent on the ALT mechanism. In PKCε knockout mice, p53 deletion elicited tumors were less aggressive than in PKCε-replete animals and exhibited a distinct pattern of chromosomal rearrangements. This evidence suggests the potential of exploiting synthetic lethality in arrest-defective hTERT-positive tumors through PKCε-directed therapeutic intervention. SIGNIFICANCE: The identification of a requirement for p53 in stringent Topo2a-dependent G2 arrest and engagement of PKCε failsafe pathways in arrest-defective hTERT-positive cells provides a therapeutic opportunity to induce selective synthetic lethality.


Subject(s)
DNA Topoisomerases, Type II/metabolism , Neoplasms , Poly-ADP-Ribose Binding Proteins/metabolism , Tumor Suppressor Protein p53 , Animals , Cell Line, Tumor , DNA Damage , Humans , Mice , Neoplasms/genetics , S Phase , Signal Transduction/genetics , Tumor Suppressor Protein p53/metabolism
4.
Nat Rev Cancer ; 21(1): 51-63, 2021 01.
Article in English | MEDLINE | ID: mdl-33177705

ABSTRACT

The maturing mutational landscape of cancer genomes, the development and application of clinical interventions and evolving insights into tumour-associated functions reveal unexpected features of the protein kinase C (PKC) family of serine/threonine protein kinases. These advances include recent work showing gain or loss-of-function mutations relating to driver or bystander roles, how conformational constraints and plasticity impact this class of proteins and how emergent cancer-associated properties may offer opportunities for intervention. The profound impact of the tumour microenvironment, reflected in the efficacy of immune checkpoint interventions, further prompts to incorporate PKC family actions and interventions in this ecosystem, informed by insights into the control of stromal and immune cell functions. Drugging PKC isoforms has offered much promise, but when and how is not obvious.


Subject(s)
Neoplasms/enzymology , Protein Kinase C/physiology , Animals , Humans , Isoenzymes/physiology , Mutation , Phosphorylation , Promoter Regions, Genetic , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/genetics , Tumor Microenvironment
5.
Eur J Med Chem ; 205: 112638, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32835918

ABSTRACT

The multiple roles of protein kinase D (PKD) in various cancer hallmarks have been repeatedly reported. Therefore, the search for novel PKD inhibitors and their evaluation as antitumor agents has gained considerable attention. In this work, novel pyrazolo[3,4-d]pyrimidine based pan-PKD inhibitors with structural variety at position 1 were synthesized and evaluated for biological activity. Starting from 3-IN-PP1, a known PKD inhibitor with IC50 values in the range of 94-108 nM, compound 17m was identified with an improved biochemical inhibitory activity against PKD (IC50 = 17-35 nM). Subsequent cellular assays demonstrated that 3-IN-PP1 and 17m inhibited PKD-dependent cortactin phosphorylation. Furthermore, 3-IN-PP1 displayed potent anti-proliferative activity against PANC-1 cells. Finally, a screening against different cancer cell lines demonstrated that 3-IN-PP1 is a potent and versatile antitumoral agent.


Subject(s)
Drug Design , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Pyrazoles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Chemistry Techniques, Synthetic , Humans , Inhibitory Concentration 50 , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry
6.
Cells ; 9(1)2020 01 08.
Article in English | MEDLINE | ID: mdl-31936297

ABSTRACT

In order to ascertain their external environment, cells and tissues have the capability to sense and process a variety of stresses, including stretching and compression forces. These mechanical forces, as experienced by cells and tissues, are then converted into biochemical signals within the cell, leading to a number of cellular mechanisms being activated, including proliferation, differentiation and migration. If the conversion of mechanical cues into biochemical signals is perturbed in any way, then this can be potentially implicated in chronic disease development and processes such as neurological disorders, cancer and obesity. This review will focus on how the interplay between mechanotransduction, cellular structure, metabolism and signalling cascades led by the Hippo-YAP/TAZ axis can lead to a number of chronic diseases and suggest how we can target various pathways in order to design therapeutic targets for these debilitating diseases and conditions.


Subject(s)
Cell Cycle Proteins/metabolism , Chronic Disease/epidemiology , Mechanotransduction, Cellular , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Acyltransferases , Hippo Signaling Pathway , Humans , Signal Transduction
7.
J Cell Sci ; 132(8)2019 04 25.
Article in English | MEDLINE | ID: mdl-30872454

ABSTRACT

The elaboration of polarity is central to organismal development and to the maintenance of functional epithelia. Among the controls determining polarity are the PAR proteins, PAR6, aPKCι and PAR3, regulating both known and unknown effectors. Here, we identify FARP2 as a 'RIPR' motif-dependent partner and substrate of aPKCι that is required for efficient polarisation and junction formation. Binding is conferred by a FERM/FA domain-kinase domain interaction and detachment promoted by aPKCι-dependent phosphorylation. FARP2 is shown to promote GTP loading of Cdc42, which is consistent with it being involved in upstream regulation of the polarising PAR6-aPKCι complex. However, we show that aPKCι acts to promote the localised activity of FARP2 through phosphorylation. We conclude that this aPKCι-FARP2 complex formation acts as a positive feedback control to drive polarisation through aPKCι and other Cdc42 effectors.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Epithelial Cells/cytology , Guanine Nucleotide Exchange Factors/metabolism , Protein Kinase C/metabolism , Tight Junctions/metabolism , cdc42 GTP-Binding Protein/metabolism , Caco-2 Cells , Cell Polarity , Guanine Nucleotide Exchange Factors/genetics , HCT116 Cells , Humans , Phosphorylation
8.
FEBS Lett ; 592(14): 2432-2443, 2018 07.
Article in English | MEDLINE | ID: mdl-29933512

ABSTRACT

The protein kinase D (PKD) family is regulated through multi-site phosphorylation, including autophosphorylation. For example, PKD displays in vivo autophosphorylation on Ser-742 (and Ser-738 in vitro) in the activation loop and Ser-910 in the C-tail (hPKD1 numbering). In this paper, we describe the surprising observation that PKD also displays in vitro autocatalytic activity towards a Tyr residue in the P + 1 loop of the activation segment. We define the molecular determinants for this unusual activity and identify a Cys residue (C705 in PKD1) in the catalytic loop as of utmost importance. In cells, PKD Tyr autophosphorylation is suppressed through the association of an inhibitory factor. Our findings provide important novel insights into PKD (auto)regulation.


Subject(s)
Protein Kinase C/chemistry , Protein Kinase C/metabolism , Tyrosine/metabolism , Amino Acid Sequence , Animals , COS Cells , Cells, Cultured , Chlorocebus aethiops , Drosophila , Enzyme Activation/genetics , HEK293 Cells , Homeostasis/genetics , Humans , Mutagenesis, Site-Directed , Phosphorylation/genetics , Protein Kinase C/genetics , Tyrosine/genetics
9.
Oxid Med Cell Longev ; 2018: 2138502, 2018.
Article in English | MEDLINE | ID: mdl-29854077

ABSTRACT

Oxidative stress is a condition that arises when cells are faced with levels of reactive oxygen species (ROS) that destabilize the homeostatic redox balance. High levels of ROS can cause damage to macromolecules including DNA, lipids, and proteins, eventually resulting in cell death. Moderate levels of ROS however serve as signaling molecules that can drive and potentiate several cellular phenotypes. Increased levels of ROS are associated with a number of diseases including neurological disorders and cancer. In cancer, increased ROS levels can contribute to cancer cell survival and proliferation via the activation of several signaling pathways. One of the downstream effectors of increased ROS is the protein kinase D (PKD) family of kinases. In this review, we will discuss the regulation and function of this family of ROS-activated kinases and describe their unique isoform-specific features, in terms of both kinase regulation and signaling output.


Subject(s)
Oxidative Stress/drug effects , Protein Isoforms/metabolism , Protein Kinase C/metabolism , Humans
10.
Oncogene ; 37(10): 1263-1278, 2018 03.
Article in English | MEDLINE | ID: mdl-29259300

ABSTRACT

Protein kinase D2 (PKD2) is a serine/threonine kinase that belongs to the PKD family of calcium-calmodulin kinases, which comprises three isoforms: PKD1, PKD2, and PKD3. PKD2 is activated by many stimuli including growth factors, phorbol esters, and G-protein-coupled receptor agonists. PKD2 participation to uncontrolled growth, survival, neovascularization, metastasis, and invasion has been documented in various tumor types including pancreatic, colorectal, gastric, hepatic, lung, prostate, and breast cancer, as well as glioma multiforme and leukemia. This review discusses the versatile functions of PKD2 from the perspective of cancer hallmarks as described by Hanahan and Weinberg. The PKD2 status, signaling pathways affected in different tumor types and the molecular mechanisms that lead to tumorigenesis and tumor progression are presented. The latest developments of small-molecule inhibitors selective for PKD/PKD2, as well as the need for further chemotherapies that prevent, slow down, or eliminate tumors are also discussed in this review.


Subject(s)
Neoplasms/genetics , Neoplasms/pathology , Protein Kinases/physiology , Animals , Cell Proliferation/genetics , Humans , Neoplasm Metastasis/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Protein Kinase D2 , Protein Kinases/genetics , Signal Transduction/genetics
11.
Medchemcomm ; 8(3): 640-646, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28890776

ABSTRACT

In this study, we set out to rationally optimize PKD inhibitors based on the pyrazolo[3,4-d]pyrimidine scaffold. The lead compound for this study was 1-NM-PP1, which was previously found by us and others to inhibit PKD. In our screening we identified one compound (3-IN-PP1) displaying a 10-fold increase in potency over 1-NM-PP1, opening new possibilities for specific protein kinase inhibitors for kinases that show sensitivity towards pyrazolo[3,4-d]pyrimidine derived compounds. Interestingly the observed SAR was not in complete agreement with the commonly observed binding mode where the pyrazolo[3,4-d]pyrimidine compounds are bound in a similar fashion as PKD's natural ligand ATP. Therefore we suggest an alternate binding mode where the compounds are flipped 180 degrees. This possible alternate binding mode for pyrazolo[3,4-d]pyrimidine based compounds could pave the way for a new class of specific protein kinase inhibitors for kinases sensitive towards pyrazolo[3,4-d]pyrmidines.

12.
Mol Metab ; 6(7): 715-724, 2017 07.
Article in English | MEDLINE | ID: mdl-28702327

ABSTRACT

OBJECTIVE: A potential strategy to treat obesity - and the associated metabolic consequences - is to increase energy expenditure. This could be achieved by stimulating thermogenesis through activation of brown adipose tissue (BAT) and/or the induction of browning of white adipose tissue (WAT). Over the last years, it has become clear that several metalloproteinases play an important role in adipocyte biology. Here, we investigated the potential role of ADAMTS5. METHODS: Mice deficient in ADAMTS5 (Adamts5-/-) and wild-type (Adamts5+/+) littermates were kept on a standard of Western-type diet for 15 weeks. Energy expenditure and heat production was followed by indirect calorimetry. To activate thermogenesis, mice were treated with the ß3-adrenergic receptor (ß3-AR) agonist CL-316,243 or alternatively, exposed to cold for 2 weeks. RESULTS: Compared to Adamts5+/+ mice, Adamts5-/- mice have significantly more interscapular BAT and marked browning of their subcutaneous (SC) WAT. Thermogenic pathway analysis indicated, in the absence of ADAMTS5, enhanced ß3-AR signaling via activation of the cAMP response element-binding protein (CREB). Additional ß3-AR stimulation with CL-316,243 promoted browning of WAT in Adamts5+/+ mice but had no additive effect in Adamts5-/- mice. However, cold exposure induced more pronounced browning of WAT in Adamts5-/- mice. CONCLUSIONS: These data indicate that ADAMTS5 plays a functional role in development of BAT and browning of WAT. Hence, selective targeting of ADAMTS5 could provide a novel therapeutic strategy for treatment/prevention of obesity and metabolic diseases.


Subject(s)
ADAMTS5 Protein/genetics , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , ADAMTS5 Protein/deficiency , ADAMTS5 Protein/metabolism , Adipose Tissue, White/drug effects , Adrenergic beta-3 Receptor Agonists/pharmacology , Animals , Cells, Cultured , Dioxoles/pharmacology , Energy Metabolism , Male , Mice , Mice, Inbred C57BL , Thermogenesis
13.
Sci Rep ; 7(1): 887, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28428613

ABSTRACT

Protein kinases are essential molecules in life and their crucial function requires tight regulation. Many kinases are regulated via phosphorylation within their activation loop. This loop is embedded in the activation segment, which additionally contains the Mg2+ binding loop and a P + 1 loop that is important in substrate binding. In this report, we identify Abl-mediated phosphorylation of a highly conserved Tyr residue in the P + 1 loop of protein kinase D2 (PKD2) during oxidative stress. Remarkably, we observed that the three human PKD isoforms display very different degrees of P + 1 loop Tyr phosphorylation and we identify one of the molecular determinants for this divergence. This is paralleled by a different activation mechanism of PKD1 and PKD2 during oxidative stress. Tyr phosphorylation in the P + 1 loop of PKD2 increases turnover for Syntide-2, while substrate specificity and the role of PKD2 in NF-κB signaling remain unaffected. Importantly, Tyr to Phe substitution renders the kinase inactive, jeopardizing its use as a non-phosphorylatable mutant. Since large-scale proteomics studies identified P + 1 loop Tyr phosphorylation in more than 70 Ser/Thr kinases in multiple conditions, our results do not only demonstrate differential regulation/function of PKD isoforms under oxidative stress, but also have implications for kinase regulation in general.


Subject(s)
Oxidative Stress , Protein Kinase C/metabolism , Protein Processing, Post-Translational , Conserved Sequence , HEK293 Cells , HeLa Cells , Humans , Intercellular Signaling Peptides and Proteins , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , NF-kappa B/metabolism , Peptides/metabolism , Phosphorylation , Protein Domains , Protein Kinase C/chemistry , Protein Kinase C/genetics , Tyrosine/genetics , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...