Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(2)2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36838369

ABSTRACT

Despite rising interest in understanding intestinal bacterial survival in situ, relatively little attention has been devoted to deciphering the interaction between bacteria and functional food ingredients. Here, we examined the interplay between diverse beneficial Lactobacillaceae species and a pomegranate (POM) extract and determined the impact of this functional ingredient on bacterial growth, cell survival, transcription and target metabolite genesis. Three commercially available probiotic strains (Lactobacillus acidophilus NCFM, Lacticaseibacillus rhamnosus GG and Lactiplantibacillus plantarum Lp-115) were used in growth assays and flow cytometry analysis, indicating differential responses to the presence of POM extract across the three strains. The inclusion of POM extract in the growth medium had the greatest impact on L. acidophilus cell counts. LIVE/DEAD staining determined significantly fewer dead cells when L. acidophilus was grown with POM extract compared to the control with no POM (1.23% versus 7.23%). Whole-transcriptome analysis following exposure to POM extract showed markedly different global transcriptome responses, with 15.88% of the L. acidophilus transcriptome, 19.32% of the L. rhamnosus transcriptome and only 2.37% of the L. plantarum transcriptome differentially expressed. We also noted strain-dependent metabolite concentrations in the medium with POM extract compared to the control medium for punicalagin, ellagic acid and gallic acid. Overall, the results show that POM extract triggers species-specific responses by probiotic strains and substantiates the rising interest in using POM as a prebiotic compound.

2.
Front Microbiol ; 13: 863228, 2022.
Article in English | MEDLINE | ID: mdl-35663851

ABSTRACT

Lactobacillus species are prominent inhabitants of the human gastrointestinal tract that contribute to maintaining a balanced microbial environment that positively influences host health. These bacterial populations can be altered through use of probiotic supplements or via dietary changes which in turn affect the host health. Utilizing polyphenolic compounds to selectively stimulate the growth of commensal bacteria can have a positive effect on the host through the production of numerous metabolites that are biologically active. Four Lactobacillus strains were grown in the presence of pomegranate (POM) extract. Two strains, namely, L. acidophilus NCFM and L. rhamnosus GG, are commonly used probiotics, while the other two strains, namely, L. crispatus NCK1351 and L. gasseri NCK1342, exhibit probiotic potential. To compare and contrast the impact of POM on the strains' metabolic capacity, we investigated the growth of the strains with and without the presence of POM and identified their carbohydrate utilization and enzyme activity profiles. To further investigate the differences between strains, an untargeted metabolomic approach was utilized to quantitatively and qualitatively define the metabolite profiles of these strains. Several metabolites were produced significantly and/or exclusively in some of the strains, including mevalonate, glutamine, 5-aminoimidazole-4-carboxamide, phenyllactate, and fumarate. The production of numerous discrete compounds illustrates the unique characteristics of and diversity between strains. Unraveling these differences is essential to understand the probiotic function and help inform strain selection for commercial product formulation.

3.
Front Microbiol ; 12: 758749, 2021.
Article in English | MEDLINE | ID: mdl-34803983

ABSTRACT

Cutibacterium acnes is an important member of the human skin microbiome and plays a critical role in skin health and disease. C. acnes encompasses different phylotypes that have been found to be associated with different skin phenotypes, suggesting a genetic basis for their impact on skin health. Here, we present a comprehensive comparative analysis of 255 C. acnes genomes to provide insights into the species genetic diversity and identify unique features that define various phylotypes. Results revealed a relatively small and open pan genome (6,240 genes) with a large core genome (1,194 genes), and three distinct phylogenetic clades, with multiple robust sub-clades. Furthermore, we identified several unique gene families driving differences between distinct C. acnes clades. Carbohydrate transporters, stress response mechanisms and potential virulence factors, potentially involved in competitive growth and host colonization, were detected in type I strains, which are presumably responsible for acne. Diverse type I-E CRISPR-Cas systems and prophage sequences were detected in select clades, providing insights into strain divergence and adaptive differentiation. Collectively, these results enable to elucidate the fundamental differences among C. acnes phylotypes, characterize genetic elements that potentially contribute to type I-associated dominance and disease, and other key factors that drive the differentiation among clades and sub-clades. These results enable the use of comparative genomics analyses as a robust method to differentiate among the C. acnes genotypes present in the skin microbiome, opening new avenues for the development of biotherapeutics to manipulate the skin microbiota.

4.
PLoS One ; 13(1): e0184277, 2018.
Article in English | MEDLINE | ID: mdl-29304041

ABSTRACT

Drinking water can be exposed to different biological contaminants from the source, through the pipelines, until reaching the final consumer or industry. Some of these are pathogenic bacteria and viruses which may cause important gastrointestinal or systemic diseases. The microbiological quality of drinking water relies mainly in monitoring three indicator bacteria of faecal origin, Escherichia coli, Enterococcus faecalis and Clostridium perfringens, which serve as early sentinels of potential health hazards for the population. Here we describe the analysis of three chimeric fluorescent protein bullets as biosensor candidates for fast detection of E. coli in drinking water. Two of the chimeric proteins (based on GFP-hadrurin and GFP-pb5 chimera proteins) failed with respect to specificity and/or sensitivity, but the GFP-colS4 chimera protein was able to carry out specific detection of E. coli in drinking water samples in a procedure encompassing about 8 min for final result and this biosensor protein was able to detect in a linear way between 20 and 103 CFU of this bacterium. Below 20 CFU, the system cannot differentiate presence or absence of the target bacterium. The fluorescence in this biosensor system is provided by the GFP subunit of the chimeric protein, which, in the case of the better performing sensor bullet, GFP-colS4 chimera, is covalently bound to a flexible peptide bridge and to a bacteriocin binding specifically to E. coli cells. Once bound to the target bacteria, the excitation step with 395 nm LED light causes emission of fluorescence from the GFP domain, which is amplified in a photomultiplier tube, and finally this signal is converted into an output voltage which can be associated with a CFU value and these data distributed along mobile phone networks, for example. This method, and the portable fluorimeter which has been developed for it, may contribute to reduce the analysis time for detecting E. coli presence in drinking water.


Subject(s)
Biosensing Techniques/methods , Drinking Water/microbiology , Escherichia coli/isolation & purification , Water Microbiology , Bacterial Load/methods , Bacterial Load/statistics & numerical data , Colicins/chemistry , Colicins/genetics , Escherichia coli/genetics , Fluorometry/instrumentation , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Humans , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL