Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 255
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38475493

ABSTRACT

Giardiasis is a parasitosis caused by Giardia lamblia with significant epidemiological and clinical importance due to its high prevalence and pathogenicity. The lack of optimal therapies for treating this parasite makes the development of new effective chemical entities an urgent need. In the search for new inhibitors of the adenylyl cyclase gNC1 obtained from G. lamblia, 14 extracts from Argentinian native plants were screened. Lepechinia floribunda and L. meyenii extracts exhibited the highest gNC1 inhibitory activity, with IC50 values of 9 and 31 µg/mL, respectively. In silico studies showed rosmarinic acid, a hydroxycinnamic acid present in both mentioned species, to be a promising anti-gNC1 compound. This result was confirmed experimentally, with rosmarinic acid showing an IC50 value of 10.1 µM. Theoretical and experimental findings elucidate the molecular-level mechanism of rosmarinic acid, pinpointing the key interactions stabilizing the compound-enzyme complex and the binding site. These results strongly support that rosmarinic acid is a promising scaffold for developing novel compounds with inhibitory activity against gNC1, which could serve as potential therapeutic agents to treat giardiasis.

2.
Bioorg Chem ; 144: 107112, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237390

ABSTRACT

We report here the virtual screening design, synthesis and activity of eight new inhibitors of SphK1. For this study we used a pre-trained Graph Convolutional Network (GCN) combined with docking calculations. This exploratory analysis proposed nine compounds from which eight displayed significant inhibitory effect against sphingosine kinase 1 (SphK1) demonstrating a high level of efficacy for this approach. Four of these compounds also displayed anticancer activity against different tumor cell lines, and three of them (5), (6) and (7) have shown a wide inhibitory action against many of the cancer cell line tested, with GI50 below 5 µM, being (5) the most promising with TGI below 10 µM for the half of cell lines. Our results suggest that the three most promising compounds reported here are the pyrimidine-quinolone hybrids (1) and (6) linked by p-aminophenylsulfanyl and o-aminophenol fragments respectively, and (8) without such aryl linker. We also performed an exhaustive study about the molecular interactions that stabilize the different ligands at the binding site of SphK1. This molecular modeling analysis was carried out by using combined techniques: docking calculations, MD simulations and QTAIM analysis. In this study we also included PF543, as reference compound, in order to better understand the molecular behavior of these ligands at the binding site of SphK1.These results provide useful information for the design of new inhibitors of SphK1 possessing these structural scaffolds.


Subject(s)
Antineoplastic Agents , Phosphotransferases (Alcohol Group Acceptor) , Quinolones , Quinolones/pharmacology , Protein Kinase Inhibitors , Antineoplastic Agents/chemistry , Models, Molecular , Cell Line, Tumor , Molecular Docking Simulation , Drug Screening Assays, Antitumor , Cell Proliferation , Structure-Activity Relationship , Molecular Structure
3.
Chem Asian J ; 19(5): e202301111, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38217883

ABSTRACT

A five-step approach, starting from simple 1,5-disubstituted indoles, has been implemented for the synthesis of diversely substituted indole-pyrido-indene pentacyclic compounds up to 54 % yield via domino radical-mediated processes in the presence of the radical reagents DLP/TTMSS and AIBN/TTMSS. Reactions proceeded with diverse key starting radical cyano-precursors strategically synthesized which were subsequently transformed into the target pentacyclic compounds through an aryl/iminyl radical-mediated domino reactions sequence. In addition to the routine spectroscopic techniques, the structure of radical precursors, as well as, the target pentacyclic products were unequivocally established by single crystal X-ray diffraction, confirming the effectiveness of the proposed synthetic sequence.

4.
Acta Crystallogr C Struct Chem ; 79(Pt 6): 227-236, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37140891

ABSTRACT

A concise and versatile synthesis of 5-(arylmethylideneamino)-4-(1H-benzo[d]imidazol-1-yl)pyrimidines has been developed, starting from 4-(1H-benzo[d]imidazol-1-yl)pyrimidines, and we report here the synthesis and spectroscopic and structural characterization of three such products, along with those of two intermediates in the reaction pathway. The intermediates 4-[2-(4-chlorophenyl)-1H-benzo[d]imidazol-1-yl]-6-methoxypyrimidine-2,5-diamine, (II), and 4-[2-(4-bromophenyl)-1H-benzo[d]imidazol-1-yl]-6-methoxypyrimidine-2,5-diamine, (III), crystallize as the isostructural monohydrates C18H15ClN5O·H2O and C18H15BrN5O·H2O, respectively, in which the components are linked into complex sheets by O-H...N and N-H...O hydrogen bonds. In the product (E)-4-methoxy-5-[(4-nitrobenzylidene)amino]-6-[2-(4-nitrophenyl)-1H-benzo[d]imidazol-1-yl]pyrimidin-2-amine, which crystallizes as a 1:1 solvate with dimethyl sulfoxide, C25H18N8O5·C2H6OS, (IV), inversion-related pairs of the pyrimidine component are linked by N-H...N hydrogen bonds to form cyclic centrosymmetric R22(8) dimers to which pairs of solvent molecules are linked by N-H...O hydrogen bonds. (E)-4-Methoxy-5-[(4-methylbenzylidene)amino]-6-[2-(4-methylphenyl)-1H-benzo[d]imidazol-1-yl]pyrimidin-2-amine, C27H24N6O, (V), crystallizes with Z' = 2 and the molecules are linked into a three-dimensional framework structure by a combination of N-H...N, C-H...N and C-H...π(arene) hydrogen bonds. The analogous product (E)-4-methoxy-5-[(4-chlorobenzylidene)amino]-6-[2-(4-methylphenyl)-1H-benzo[d]imidazol-1-yl]pyrimidin-2-amine, C26H21ClN6O, (VI), crystallizes from dimethyl sulfoxide in two forms: one, denoted (VIa), is isostructural with (V), and the other, denoted (VIb), crystallizes with Z' = 1, but as an unknown solvate in which the pyrimidine molecules are linked by N-H...N hydrogen bonds to form a ribbon containing two types of centrosymmetric ring.

5.
Acta Crystallogr C Struct Chem ; 79(Pt 3): 94-103, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36871291

ABSTRACT

Four new 2,4-distyrylquinolines and one 2-styryl-4-[2-(thiophen-2-yl)vinyl]quinoline have been synthesized using indium trichloride condensation reactions between aromatic aldehydes and the corresponding 2-methylquinolines, which were themselves prepared using Friedländer annulation reactions between mono- or diketones and (2-aminophenyl)chalcones: the products have all been fully characterized by spectroscopic and crystallographic methods. 2,4-Bis[(E)-styryl]quinoline, C25H19N, (IIa), and its dichloro analogue, 2-[(E)-2,4-dichlorostyryl]-4-[(E)-styryl]quinoline, C25H17Cl2N, (IIb), exhibit different orientations of the 2-styryl unit relative to the quinoline nucleus. In each of the 3-benzoyl analogues {2-[(E)-4-bromostyryl]-4-[(E)-styryl]quinolin-3-yl}(phenyl)methanone, C32H22BrNO, (IIc), {2-[(E)-4-bromostyryl]-4-[(E)-4-chlorostyryl]quinolin-3-yl}(phenyl)methanone, C32H21BrClNO, (IId), and {2-[(E)-4-bromostyryl]-4-[(E)-2-(thiophen-2-yl)vinyl]quinolin-3-yl}(phenyl)methanone, C30H20BrNOS, (IIe), the orientation of the 2-styryl unit is similar to that in (IIa), but the orientation of the 4-arylvinyl units show considerable variation. The thiophene unit in (IIe) is disordered over two sets of atomic sites having occupancies of 0.926 (3) and 0.074 (3). There are no hydrogen bonds of any kind in the structure of (IIa), but in (IId), a single C-H...O hydrogen bond links the molecules into cyclic centrosymmetric R22(20) dimers. A combination of C-H...N and C-H...π hydrogen bonds links the molecules of (IIb) into a three-dimensional framework structure. A combination of three C-H...π hydrogen bonds links the molecules of (IIc) into sheets, and a combination of C-H...O and C-H...π hydrogen bonds forms sheets in (IIe). Comparisons are made with the structures of some related compounds.

6.
Acta Crystallogr C Struct Chem ; 79(Pt 1): 3-11, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36602015

ABSTRACT

Three new styrylquinoline-chalcone hybrids have been synthesized using a three-step pathway starting with Friedländer cyclocondensation between (2-aminophenyl)chalcones and acetone to give 2-methyl-4-styrylquinolines, followed by selective oxidation to the 2-formyl analogues, and finally Claisen-Schmidt condensation between the formyl intermediates and 1-acetylnaphthalene. All intermediates and the final products have been fully characterized by IR and 1H/13C NMR spectroscopy, and by high-resolution mass spectrometry, and the three products have been characterized by single-crystal X-ray diffraction. The molecular conformations of (E)-3-{4-[(E)-2-phenylethenyl]quinolin-2-yl}-1-(naphthalen-1-yl)prop-2-en-1-one, C30H21NO, (IVa), and (E)-3-{4-[(E)-2-(4-fluorophenyl)ethenyl]quinolin-2-yl}-1-(naphthalen-1-yl)prop-2-en-1-one, C30H20FNO, (IVb), are very similar. In each compound, the molecules are linked into a three-dimensional array by hydrogen bonds, of the C-H...O and C-H...N types in (IVa), and of the C-H...O and C-H...π types in (IVb), and by two independent π-π stacking interactions. By contrast, the conformation of the chalcone unit in (E)-3-{4-[(E)-2-(2-chlorophenyl)ethenyl]quinolin-2-yl}-1-(naphthalen-1-yl)prop-2-en-1-one, C30H20ClNO, (IVc), differs from those in (IVa) and (IVb). There are only weak hydrogen bonds in the structure of (IVc), but a single rather weak π-π stacking interaction links the molecules into chains. Comparisons are made with some related structures.


Subject(s)
Chalcone , Chalcones , Chalcone/chemistry , Chalcones/chemistry , Crystallography, X-Ray , Hydrogen Bonding
7.
Acta Crystallogr C Struct Chem ; 78(Pt 11): 671-680, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36331891

ABSTRACT

Three new 4-styrylquinoline-benzimidazole hybrids have been synthesized using a reaction sequence in which 2-methylquinoline precursors first undergo selective oxidation by selenium dioxide to form the corresponding 2-formylquinoline intermediates, followed by oxidative cyclocondensation reactions with benzene-1,2-diamine to yield the hybrid products. The formyl intermediates and the hybrid products have all been fully characterized using a combination of IR, 1H and 13C NMR spectroscopy, and high-resolution mass spectrometry, and the structures of the three hybrid products have been determined using single-crystal X-ray diffraction. Ethyl (E)-2-(1H-benzo[d]imidazol-2-yl)-4-(4-chlorostyryl)quinoline-3-carboxylate, C27H20ClN3O2, (IIIa), and ethyl (E)-2-(1H-benzo[d]imidazol-2-yl)-4-(2-methoxystyryl)quinoline-3-carboxylate, C28H23N3O3, (IIIb), both crystallize in the solvent-free form with Z' = 1, but ethyl (E)-2-(1H-benzo[d]imidazol-2-yl)-4-(4-methylstyryl)quinoline-3-carboxylate, C28H23N3O2, (IIIc), crystallizes as a partial hexane solvate with Z' = 3, and the ester group in one of the independent molecules is disordered over two sets of atomic sites having occupancies of 0.765 (7) and 0.235 (7). The molecules of (IIIc) enclose continuous channels which are occupied by disordered solvent molecules having partial occupancy. In all of the molecules of (IIIa)-(IIIc), the styrylquinoline fragment is markedly nonplanar. Different combinations of N-H...O and C-H...π hydrogen bonds generate supramolecular assemblies which are two-dimensional in (IIIb) and (IIIc), but three-dimensional in (IIIa). Comparisons are made with the structures of some related compounds.


Subject(s)
Benzimidazoles , Quinolines , Hydrogen Bonding , Crystallography, X-Ray , Benzimidazoles/chemistry
8.
Acta Crystallogr C Struct Chem ; 78(Pt 10): 524-530, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36196785

ABSTRACT

Three new 2-methyl-4-styrylquinoline derivatives have been synthesized in high yields using Friedländer reactions between chalcones [1-(2-aminophenyl)-3-arylprop-2-en-1-ones] and acetone, and characterized using IR, 1H and 13C NMR spectroscopy, and mass spectrometry, and by crystal structure analysis. In (E)-4-(4-fluorostyryl)-2-methylquinoline, C18H14FN, (I), the molecules are joined into cyclic centrosymmetric dimers by C-H...N hydrogen bonds and these dimers are linked into sheets by π-π stacking interactions. The molecules of (E)-2-methyl-4-[4-(trifluoromethyl)styryl]quinoline, C19H14F3N, (II), are linked into cyclic centrosymmetric dimers by C-H...π hydrogen bonds and these dimers are linked into chains by a single π-π stacking interaction. There are no significant hydrogen bonds in the structure of (E)-4-(2,6-dichlorostyryl)-2-methylquinoline, C18H13Cl2N, (III), but molecules related by translation along [010] form stacks with an intermolecular spacing of only 3.8628 (2) Å. Comparisons are made with the structures of some related compounds.


Subject(s)
Chalcone , Chalcones , Quinolines , Acetone , Crystallography, X-Ray , Hydrogen Bonding , Molecular Structure , Quinolines/chemistry
9.
Int J Mol Sci ; 23(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36293443

ABSTRACT

A new series of sulfonamides, 8a-b, 10, 12, and 14a-b, were synthesized by N-sulfonation reaction with sulfonyl chlorides 6a-b. Five new series of chalcone-sulfonamide hybrids (16-20)a-f were prepared via Claisen-Schmidt condensation of the newly obtained sulfonamides with aromatic aldehydes 15a-f in basic medium. Chalcones substituted with chlorine at position 4 of each series were used as precursors for the generation of their five-membered heterocyclic pyrazoline (22-23)a-d, (24-25)a-b and carbothioamide 27a-f derivatives. The synthesized compounds were evaluated for their anticancer and antituberculosis activities. To determine their anticancer activity, compounds were screened against sixty human cancer cell lines at a single dose (10 µM). Compounds 17a-c were highly active against LOX IMVI (melanoma), with IC50 values of 0.34, 0.73 and 0.54 µM, respectively. Chalcone 18e showed remarkable results against the entire panel of leukemia cell lines with IC50 values between 0.99-2.52 µM. Moreover, compounds 20e and 20f displayed growth inhibition of Mycobacterium tuberculosis H37Rv at concentrations below 10 µM. Although they showed low selectivity in cytotoxicity tests against the Vero cell line, further optimization could advance the potential biological activity of the selected compounds.


Subject(s)
Antineoplastic Agents , Chalcone , Chalcones , Humans , Chalcones/pharmacology , Chalcone/pharmacology , Nitrogen , Chlorine , Chlorides , Structure-Activity Relationship , Antitubercular Agents/pharmacology , Sulfonamides/pharmacology , Sulfanilamide , Aldehydes , Antineoplastic Agents/pharmacology , Molecular Structure , Cell Line, Tumor , Drug Screening Assays, Antitumor
10.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35890090

ABSTRACT

A battery of novel pyrimidine-quinolone hybrids was designed by docking scaffold replacement as lactate dehydrogenase A (hLDHA) inhibitors. Structures with different linkers between the pyrimidine and quinolone scaffolds (10-21 and 24−31) were studied in silico, and those with the 2-aminophenylsulfide (U-shaped) and 4-aminophenylsulfide linkers (24−31) were finally selected. These new pyrimidine-quinolone hybrids (24−31)(a−c) were easily synthesized in good to excellent yields by a green catalyst-free microwave-assisted aromatic nucleophilic substitution reaction between 3-(((2/4-aminophenyl)thio)methyl)quinolin-2(1H)-ones 22/23(a−c) and 4-aryl-2-chloropyrimidines (1−4). The inhibitory activity against hLDHA of the synthesized hybrids was evaluated, resulting IC50 values of the U-shaped hybrids 24−27(a−c) much better than the ones of the 1,4-linked hybrids 28−31(a−c). From these results, a preliminary structure−activity relationship (SAR) was established, which enabled the design of novel 1,3-linked pyrimidine-quinolone hybrids (33−36)(a−c). Compounds 35(a−c), the most promising ones, were synthesized and evaluated, fitting the experimental results with the predictions from docking analysis. In this way, we obtained novel pyrimidine-quinolone hybrids (25a, 25b, and 35a) with good IC50 values (<20 µM) and developed a preliminary SAR.

11.
Acta Crystallogr C Struct Chem ; 77(Pt 9): 496-504, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34482292

ABSTRACT

Five new spiro[indoline-3,3'-indolizine]s have been synthesized with high regio- and stereospecificity in one-pot three-component reactions between a substituted indole-2,3-dione, (S)-pipecolic acid and trans-3-benzoylacrylic acid, and subsequently characterized using a combination of elemental analysis, IR and 1H and 13C NMR spectroscopy, mass spectrometry and crystal structure analysis. (1'SR,2'SR,3RS,8a'RS)-2'-Benzoyl-5-fluoro-2-oxo-1',5',6',7',8',8a'-hexahydro-2'H-spiro[indoline-3,3'-indolizine]-1'-carboxylic acid, C23H21FN2O4, (I), and (1'SR,2'SR,3RS,8a'RS)-2'-benzoyl-5-methyl-2-oxo-1',5',6',7',8',8a'-hexahydro-2'H-spiro[indoline-3,3'-indolizine]-1'-carboxylic acid, C24H24N2O4, (II), are isomorphous, as are (1'SR,2'SR,3RS,8a'RS)-2'-benzoyl-1-methyl-2-oxo-1',5',6',7',8',8a'-hexahydro-2'H-spiro[indoline-3,3'-indolizine]-1'-carboxylic acid, C24H24N2O4, (III), and (1'SR,2'SR,3RS,8a'RS)-2'-benzoyl-5-chloro-1-methyl-2-oxo-1',5',6',7',8',8a'-hexahydro-2'H-spiro[indoline-3,3'-indolizine]-1'-carboxylic acid, C24H23ClN2O4, (IV). Within each isomorphous pair, the spiro ring systems show some conformational differences. In each of (I) and (II), the molecules are linked into complex sheets by a combination of four types of hydrogen bond, and in each of (III) and (IV), a combination of O-H...O and C-H...π(arene) hydrogen bonds links the molecules to form a chain of centrosymmetric rings. In (1'SR,2'SR,3RS,8a'RS)-2'-benzoyl-1-hexyl-2-oxo-1',5',6',7',8',8a'-hexahydro-2'H-spiro[indoline-3,3'-indolizine]-1'-carboxylic acid, C29H34N2O4, (V), a combination of five hydrogen bonds links the molecules into sheets of alternating R22(16) and R66(46) rings. A mechanism is proposed for the formation of compounds (I)-(V) and some comparisons with related structures are made.

12.
Sci Rep ; 11(1): 16856, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34413359

ABSTRACT

P-gp-associated multidrug resistance is a major impediment to the success of chemotherapy. With the aim of finding non-toxic and effective P-gp inhibitors, we investigated a panel of quinolin-2-one-pyrimidine hybrids. Among the active compounds, two of them significantly increased intracellular doxorubicin and rhodamine 123 accumulation by inhibiting the efflux mediated by P-gp and restored doxorubicin toxicity at nanomolar range. Structure-activity relationships showed that the number of methoxy groups, an optimal length of the molecule in its extended conformation, and at least one flexible methylene group bridging the quinolinone to the moiety bearing the pyrimidine favored the inhibitory potency of P-gp. The best compounds showed a similar binding pattern and interactions to those of doxorubicin and tariquidar, as revealed by MD and hybrid QM/MM simulations performed with the recent experimental structure of P-gp co-crystallized with paclitaxel. Analysis of the molecular interactions stabilizing the different molecular complexes determined by MD and QTAIM showed that binding to key residues from TMH 4-7 and 12 is required for inhibition.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Drug Resistance, Multiple/drug effects , Pyrimidines/pharmacology , Quinolones/pharmacology , Cell Death/drug effects , Humans , K562 Cells , Molecular Dynamics Simulation , Protein Transport/drug effects , Pyrimidines/chemistry , Pyrimidines/toxicity , Quinolones/chemistry , Quinolones/toxicity , Rhodamine 123/metabolism , Structure-Activity Relationship , Thermodynamics
13.
Arch Pharm (Weinheim) ; 354(9): e2100094, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34050547

ABSTRACT

A novel series of quinoline-based symmetrical and unsymmetrical bis-chalcones was synthesized via a Claisen-Schmidt condensation reaction between 3-formyl-quinoline/quinolone derivatives with acetone or arylidene acetones, respectively, by using KOH/MeOH/H2 O as a reaction medium. Twelve of the obtained compounds were evaluated for their in vitro cytotoxic activity against 60 different human cancer cell lines according to the National Cancer Institute protocol. Among the screened compounds, the symmetrical N-butyl bis-quinolinyl-chalcone 14g and the unsymmetrical quinolinyl-bis-chalcone 17o bearing a 7-chloro-substitution on the N-benzylquinoline moiety and 4-hydroxy-3-methoxy substituent on the phenyl ring, respectively, exhibited the highest overall cytotoxicity against the evaluated cell lines with a GI50 range of 0.16-5.45 µM, with HCT-116 (GI50 = 0.16) and HT29 (GI50 = 0.42 µM) (colon cancer) representing best-case scenarios. Notably, several GI50 values for these compounds were lower than those of the reference drugs doxorubicin and 5-FU. Docking studies performed on selected derivatives yielded very good binding energies in the active site of proteins that participate in key carcinogenic pathways.


Subject(s)
Antineoplastic Agents/pharmacology , Chalcones/pharmacology , Neoplasms/drug therapy , Quinolines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Chalcones/chemical synthesis , Chalcones/chemistry , Doxorubicin/pharmacology , Fluorouracil/pharmacology , HCT116 Cells , HT29 Cells , Humans , Molecular Docking Simulation , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship
14.
Acta Crystallogr C Struct Chem ; 76(Pt 9): 883-890, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32887859

ABSTRACT

Structures are reported for two matched sets of substituted 4-styrylquinolines which were prepared by the formation of the heterocyclic ring in cyclocondensation reactions between 1-(2-aminophenyl)-3-arylprop-2-en-1-ones with 1,3-dicarbonyl compounds. (E)-3-Acetyl-4-[2-(4-methoxyphenyl)ethenyl]-2-methylquinoline, C21H19NO2, (I), (E)-3-acetyl-4-[2-(4-bromophenyl)ethenyl]-2-methylquinoline, C20H16BrNO, (II), and (E)-3-acetyl-2-methyl-4-{2-[4-(trifluoromethyl)phenyl]ethenyl}quinoline, C21H16F3NO, (III), are isomorphous and in each structure the molecules are linked by a single C-H...O hydrogen bond to form C(6) chains. In (I), but not in (II) or (III), this is augmented by a C-H...π(arene) hydrogen bond to form a chain of rings; hence, (I)-(III) are not strictly isostructural. By contrast with (I)-(III), no two of ethyl (E)-4-[2-(4-methoxyphenyl)ethenyl]-2-methylquinoline-3-carboxylate, C22H21NO3, (IV), ethyl (E)-4-[2-(4-bromophenyl)ethenyl]-2-methylquinoline-3-carboxylate, C21H18BrNO2, (V), and ethyl (E)-2-methyl-4-{2-[4-(trifluoromethyl)phenyl]ethenyl}quinoline-3-carboxylate, C22H18F3NO2, (VI), are isomorphous. The molecules of (IV) are linked by a single C-H...O hydrogen bond to form C(13) chains, but cyclic centrosymmetric dimers are formed in both (V) and (VI). The dimer in (V) contains a C-H...π(pyridyl) hydrogen bond, while that in (VI) contains two independent C-H...O hydrogen bonds. Comparisons are made with some related structures, and both the regiochemistry and the mechanism of the heterocyclic ring formation are discussed.

15.
Acta Crystallogr C Struct Chem ; 76(Pt 8): 779-785, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32756041

ABSTRACT

The synthesis and characterization of three new dispiro[indoline-3,3'-pyrrolizine-1',5''-thiazolidine] compounds are reported, together with the crystal structures of two of them. (3RS,1'SR,2'SR,7a'SR)-2'-(4-Chlorophenyl)-1-hexyl-2''-sulfanylidene-5',6',7',7a'-tetrahydro-2'H-dispiro[indoline-3,3'-pyrrolizine-1',5''-thiazolidine]-2,4''-dione, C28H30ClN3O2S2, (I), (3RS,1'SR,2'SR,7a'SR)-2'-(4-chlorophenyl)-1-benzyl-5-methyl-2''-sulfanylidene-5',6',7',7a'-tetrahydro-2'H-dispiro[indoline-3,3'-pyrrolizine-1',5''-thiazolidine]-2,4''-dione, C30H26ClN3O2S2, (II), and (3RS,1'SR,2'SR,7a'SR)-2'-(4-chlorophenyl)-5-fluoro-2''-sulfanylidene-5',6',7',7a'-tetrahydro-2'H-dispiro[indoline-3,3'-pyrrolizine-1',5''-thiazolidine]-2,4''-dione, C22H17ClFN3O2S2, (III), were each isolated as a single regioisomer using a one-pot reaction involving L-proline, a substituted isatin and (Z)-5-(4-chlorobenzylidene)-2-sulfanylidenethiazolidin-4-one [5-(4-chlorobenzylidene)rhodanine]. The compositions of (I)-(III) were established by elemental analysis, complemented by high-resolution mass spectrometry in the case of (I); their constitutions, including the definition of the regiochemistry, were established using NMR spectroscopy, and the relative configurations at the four stereogenic centres were established using single-crystal X-ray structure analysis. A possible reaction mechanism for the formation of (I)-(III) is proposed, based on the detailed stereochemistry. The molecules of (I) are linked into simple chains by a single N-H...N hydrogen bond, those of (II) are linked into a chain of rings by a combination of N-H...O and C-H...S=C hydrogen bonds, and those of (III) are linked into sheets by a combination of N-H...N and N-H...S=C hydrogen bonds.

16.
Acta Crystallogr C Struct Chem ; 76(Pt 5): 433-445, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32367824

ABSTRACT

An operationally simple and time-efficient approach has been developed for the synthesis of racemic N-substituted 3-(2-aryl-2-oxoethyl)-3-hydroxyindolin-2-ones by a piperidine-catalysed aldol reaction between aryl methyl ketones and N-alkylisatins. These aldol products were used successfully as strategic intermediates for the preparation of N-substituted (E)-3-(2-hetaryl-2-oxoethylidene)indolin-2-ones by a stereoselective dehydration reaction under acidic conditions. The products have all been fully characterized by 1H and 13C NMR spectroscopy, by mass spectrometry and, for a representative selection, by crystal structure analysis. In each of (RS)-1-benzyl-3-hydroxy-3-[2-(4-methoxyphenyl)-2-oxoethyl]indolin-2-one, C24H21NO4, (Ic), and (RS)-1-benzyl-3-{2-[4-(dimethylamino)phenyl]-2-oxoethyl}-3-hydroxyindolin-2-one, C25H24N2O3, (Id), inversion-related pairs of molecules are linked by O-H...O hydrogen bonds to form R22(10) rings, which are further linked into chains of rings by a combination of C-H...O and C-H...π(arene) hydrogen bonds in (Ic) and by C-H...π(arene) hydrogen bonds in (Id). The molecules of (RS)-1-benzyl-3-hydroxy-3-[2-oxo-2-(pyridin-4-yl)ethyl]indolin-2-one, C22H18N2O3, (Ie), are linked into a three-dimensional framework structure by a combination of O-H...N, C-H...O and C-H...π(arene) hydrogen bonds. (RS)-3-[2-(Benzo[d][1,3]dioxol-5-yl)-2-oxoethyl]-1-benzyl-3-hydroxyindolin-2-one, C24H19NO5, (If), crystallizes with Z' = 2 in the space group P-1 and the molecules are linked into complex sheets by a combination of O-H...O, C-H...O and C-H...π(arene) hydrogen bonds. In each of (E)-1-benzyl-3-[2-(4-fluorophenyl)-2-oxoethylidene]indolin-2-one, C23H16FNO2, (IIa), and (E)-1-benzyl-3-[2-oxo-2-(thiophen-2-yl)ethylidene]indolin-2-one, C21H15NO2S, (IIg), the molecules are linked into simple chains by a single C-H...O hydrogen bond, while those of (E)-1-benzyl-3-[2-oxo-2-(pyridin-4-yl)ethylidene]indolin-2-one, C22H16N2O2, (IIe), are linked by three C-H...O hydrogen bonds to form sheets which are further linked into a three-dimensional structure by C-H...π(arene) hydrogen bonds. There are no hydrogen bonds in the structures of either (E)-1-benzyl-3-[2-(4-methoxyphenyl)-2-oxoethylidene]indolin-2-one, C24H19NO3, (IIc), or (E)-1-benzyl-5-chloro-3-[2-(4-chlorophenyl)-2-oxoethylidene]indolin-2-one, C23H15Cl2NO2, (IIh), but the molecules of (IIh) are linked into chains of π-stacked dimers by a combination of C-Cl...π(arene) and aromatic π-π stacking interactions.

17.
Acta Crystallogr C Struct Chem ; 76(Pt 5): 446-453, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32367825

ABSTRACT

An efficient synthesis of 1-arylisochromeno[3,4-d][1,2,3]triazol-5(1H)-ones, involving the diazotization of 3-amino-4-arylamino-1H-isochromen-1-ones in weakly acidic solution, has been developed and the spectroscopic characterization and crystal structures of four examples are reported. The molecules of 1-phenylisochromeno[3,4-d][1,2,3]triazol-5(1H)-one, C15H9N3O2, (I), are linked into sheets by a combination of C-H...N and C-H...O hydrogen bonds, while the structures of 1-(2-methylphenyl)isochromeno[3,4-d][1,2,3]triazol-5(1H)-one, C16H11N3O2, (II), and 1-(3-chlorophenyl)isochromeno[3,4-d][1,2,3]triazol-5(1H)-one, C15H8ClN3O2, (III), each contain just one hydrogen bond which links the molecules into simple chains, which are further linked into sheets by π-stacking interactions in (II) but not in (III). In the structure of 1-(4-chlorophenyl)isochromeno[3,4-d][1,2,3]triazol-5(1H)-one, (IV), isomeric with (III), a combination of C-H...O and C-H...π(arene) hydrogen bonds links the molecules into sheets. When compound (II) was exposed to a strong acid in methanol, quantitative conversion occurred to give the ring-opened transesterification product methyl 2-[4-hydroxy-1-(2-methylphenyl)-1H-1,2,3-triazol-5-yl]benzoate, C17H15N3O3, (V), where the molecules are linked by paired O-H...O hydrogen bonds to form centrosymmetric dimers.

18.
Arch Pharm (Weinheim) ; 353(5): e1900351, 2020 May.
Article in English | MEDLINE | ID: mdl-32187709

ABSTRACT

A new series of N-substituted pyrazoline derivatives 6a-g, 7a-g, 8a-g, and 9a-g was synthetized by reaction of hydrazine derivatives and chalcone-thiazole hybrids bearing nitrogen mustard 5a-g. The chalcones 5a-g were obtained by Claisen-Schmidt condensation of thiazole-2-nitrogen mustard 3 and selected acetophenones 4a-g. These new compounds 6/7/8/9a-g were screened for their antifungal activity against Cryptococcus neoformans, with IC50 values of 3.9-7.8 µg/ml for the N-3,5-dichlorophenyl pyrazolines 9e-g. Interestingly, those compounds show low cytotoxic effects toward erythrocytes (RBC). In addition, N-acetyl (6a,b) and N-formyl pyrazolines (7a, 7b, 7c, and 7g) showed inhibitory activity against methicillin-susceptible Staphylococcus aureus, methicillin-resistant S. aureus, and vancomycin-intermediate S. aureus, with the most important minimum inhibitory concentration values ranging from 31.25 to 125 µg/ml. Regarding the antiprotozoal activity, thiazolyl-pyrazolines 9g, 8f, and 7c display high activity against Plasmodium falciparum, Leishmania (V) panamensis, and Trypanosoma cruzi, with EC50 values of 11.80, 6.46, and 4.98 µM, respectively, and with 7c being approximately 2.6-fold more potent than benznidazole with a selectivity index of 1.61 on U-937 human cells, showing promising potential as a novel antitrypanosomal agent.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antiprotozoal Agents/pharmacology , Mechlorethamine/pharmacology , Pyrazoles/pharmacology , Thiazoles/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Dose-Response Relationship, Drug , Leishmania/drug effects , Mechlorethamine/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium falciparum/drug effects , Pyrazoles/chemistry , Structure-Activity Relationship , Thiazoles/chemistry , Trypanosoma cruzi/drug effects , Vancomycin-Resistant Staphylococcus aureus/drug effects
19.
Bioorg Chem ; 94: 103414, 2020 01.
Article in English | MEDLINE | ID: mdl-31757412

ABSTRACT

Sphingosine-1-phosphate is now emerging as an important player in cancer, inflammation, autoimmune, neurological and cardiovascular disorders. Abundance evidence in animal and humans cancer models has shown that SphK1 is linked to cancer. Thus, there is a great interest in the development new SphK1 inhibitors as a potential new treatment for cancer. In a search for new SphK1 inhibitors we selected the well-known SKI-II inhibitor as the starting structure and we synthesized a new inhibitor structurally related to SKI-II with a significant but moderate inhibitory effect. In a second approach, based on our molecular modeling results, we designed new structures based on the structure of PF-543, the most potent known SphK1 inhibitor. Using this approach, we report the design, synthesis and biological evaluation of a new series of compounds with inhibitory activity against both SphK1 and SphK2. These new inhibitors were obtained incorporating new connecting chains between their polar heads and hydrophobic tails. On the other hand, the combined techniques of molecular dynamics simulations and QTAIM calculations provided complete and detailed information about the molecular interactions that stabilize the different complexes of these new inhibitors with the active sites of the SphK1. This information will be useful in the design of new SphK inhibitors.


Subject(s)
Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Pyrimidines/therapeutic use , Drug Design , Humans , Models, Molecular , Pyrimidines/pharmacology
20.
ACS Omega ; 4(15): 16689-16700, 2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31616852

ABSTRACT

A convenient access toward novel fluoroionophores based on 1-(2-pyridyl)-4-styrylpyrazoles (PSPs) substituted at position 3 with donor or acceptor aryl groups is reported. The synthesis proceeds in two steps: the first one via Wittig olefination of the appropriate 4-formylpyrazole and then Mizoroki-Heck coupling to yield the desired products in an overall yield of up to 69%. Photophysical properties of products (4-styryl) and their intermediates (4-vinyl) were explored, finding that they have strong blue-light emission with high quantum yields (up to 66%) due to ICT phenomena. The 3-phenyl PSP was studied as a turn-off fluorescent probe in metal ion sensing, finding a high selectivity to Hg2+ (LOD = 3.1 × 10-7 M) in a process that could be reversed with ethylenediamine. The sensing mechanism and binding mode of the ligand to Hg2+ were established by HRMS analysis and 1H NMR titration tests.

SELECTION OF CITATIONS
SEARCH DETAIL
...