Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Microsc ; 285(3): 144-155, 2022 03.
Article in English | MEDLINE | ID: mdl-33345299

ABSTRACT

Vitreous enamel steels (VES) are a class of metal-ceramic composite materials realised with a low carbon steel basement coated by an enamel layer. During the firing phase to adhere the enamel to the metal, several gas bubbles remain entrapped inside the enamel volume modifying its internal structure. In this work high-resolution X-ray computed tomography (micro-CT) was used to investigate these composite materials. The micro-CT reconstructions enabled a detailed investigation of VES minimising the metal artefacts. The tomograms were used to develop finite element models (FEM) of VES by means of a representative volume element (RVE) to evaluate the thermal residual stresses caused by the manufacturing process, as well as the effect of the 3D bubbles distribution on the internal stress patterns after the thermic gradient. The promising results from this study have the potential to inform further research on such composite materials by optimising manufacturing processes for targeted applications.


Vitreous enamel steels are a particular class of composite materials composed by a low carbon steel basement coated by a vitreous enamel layer. Throughout the firing process applied to fix the enamel on the steel substrate, several gas bubbles remain entrapped inside the internal volume of the enamel modifying its internal microstructure. The presence of these bubbles substantially modifies the internal mechanical state of the structure developing residual stresses both among the bubbles and between the enamel-metal surface. However, to date no methods are still available to properly investigate the 3D bubbles morphology, distribution and stress patterns inside these materials. For this reason, in the present study we developed for the first time a high-resolution X-ray computed tomography (micro-CT) protocol able to investigate the vitreous enamel steels full field structure and numerically study their mechanics when the thermal gradient is applied. The micro-CT scans reconstructions allowed the visualisation of the enamel coating structure minimising metal artefacts. Moreover, the scans were postprocessed developing unpreceded 3D reconstructions with which the distribution, the volume and the mean diameter of the bubbles were analysed and defined. Subsequently, full field finite element computational models able to evaluate the thermal residual stresses produced inside the enamel volume were developed. They permitted to investigate the effect of the bubbles distribution on the internal residual stress patterns due to the thermal gradient generated throughout the cooling phase. The promising results from this study have the potential to inform further research on such composite materials by optimising manufacturing processes for targeted applications.


Subject(s)
Composite Resins , Steel , Composite Resins/chemistry , Finite Element Analysis , Stress, Mechanical , Workflow , X-Ray Microtomography , X-Rays
2.
Polymers (Basel) ; 13(11)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070820

ABSTRACT

New bio-based polymers capable of either outperforming fossil-based alternatives or possessing new properties and functionalities are of relevant interest in the framework of the circular economy. In this work, a novel bio-based polycarvone acrylate di-epoxide (PCADE) was used as an additive in a one-step straightforward electrospinning process to endow the fibres with functionalisable epoxy groups at their surface. To demonstrate the feasibility of the approach, poly(vinylidene fluoride) (PVDF) fibres loaded with different amounts of PCADE were prepared. A thorough characterisation by TGA, DSC, DMTA and XPS showed that the two polymers are immiscible and that PCADE preferentially segregates at the fibre surface, thus developing a very simple one-step approach to the preparation of ready-to-use surface functionalisable fibres. We demonstrated this by exploiting the epoxy groups at the PVDF fibre surface in two very different applications, namely in epoxy-based carbon fibre reinforced composites and membranes for ω-transaminase enzyme immobilisation for heterogeneous catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...