Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 15: 621076, 2021.
Article in English | MEDLINE | ID: mdl-33841077

ABSTRACT

The ventricular-subventricular zone (V-SVZ) is the principal neurogenic niche in the adult mammalian forebrain. Neural stem/progenitor cell (NSPC) activity within the V-SVZ is controlled by numerous of extrinsic factors, whose downstream effects on NSPC proliferation, survival and differentiation are transduced via a limited number of intracellular signaling pathways. Here, we investigated the relationship between age-related changes in NSPC output and activity of signaling pathways downstream of the epidermal growth factor receptor (EGFR), a major regulator of NSPC activity. Biochemical experiments indicated that age-related decline of NSPC activity in vivo is accompanied by selective deficits amongst various EGFR-induced signal pathways within the V-SVZ niche. Pharmacological loss-of-function signaling experiments with cultured NSPCs revealed both overlap and selectivity in the biological functions modulated by the EGFR-induced PI3K/AKT, MEK/ERK and mTOR signaling modules. Specifically, while all three modules promoted EGFR-mediated NSPC proliferation, only mTOR contributed to NSPC survival and only MEK/ERK repressed NSPC differentiation. Using a gain-of-function in vivo genetic approach, we electroporated a constitutively active EGFR construct into a subpopulation of quiescent, EGFR-negative neural stem cells (qNSCs); this ectopic activation of EGFR signaling enabled qNSCs to divide in 3-month-old early adult mice, but not in mice at middle-age or carrying familial Alzheimer disease mutations. Thus, (i) individual EGFR-induced signaling pathways have dissociable effects on NSPC proliferation, survival, and differentiation, (ii) activation of EGFR signaling is sufficient to stimulate qNSC cell cycle entry during early adulthood, and (iii) the proliferative effects of EGFR-induced signaling are dominantly overridden by anti-proliferative signals associated with aging and Alzheimer's disease.

2.
Life Sci Alliance ; 3(7)2020 07.
Article in English | MEDLINE | ID: mdl-32482782

ABSTRACT

The ventricular epithelium of the adult forebrain is a heterogeneous cell population that is a source of both quiescent and activated neural stem cells (qNSCs and aNSCs, respectively). We genetically targeted a subset of ventricle-contacting, glial fibrillary acidic protein (GFAP)-expressing cells, to study their involvement in qNSC/aNSC-mediated adult neurogenesis. Ventricle-contacting GFAP+ cells were lineage-traced beginning in early adulthood using adult brain electroporation and produced small numbers of olfactory bulb neuroblasts until at least 21 mo of age. Notably, electroporated GFAP+ neurogenic precursors were distinct from both qNSCs and aNSCs: they did not give rise to neurosphere-forming aNSCs in vivo or after extended passaging in vitro and they were not recruited during niche regeneration. GFAP+ cells with these properties included a FoxJ1+GFAP+ subset, as they were also present in an inducible FoxJ1 transgenic lineage-tracing model. Transiently overexpressing Mash1 increased the neurogenic output of electroporated GFAP+ cells in vivo, identifying them as a potentially recruitable population. We propose that the qNSC/aNSC lineage of the adult forebrain coexists with a distinct, minimally expanding subset of GFAP+ neurogenic precursors.


Subject(s)
Cerebral Ventricles/metabolism , Epithelium/metabolism , Gene Targeting , Nerve Growth Factors/genetics , Neural Stem Cells/metabolism , Prosencephalon/metabolism , Adult , Adult Stem Cells/metabolism , Animals , Biomarkers , Cell Differentiation/genetics , Fluorescent Antibody Technique , Gene Expression , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Humans , Mice , Mice, Transgenic , Nerve Growth Factors/metabolism , Neural Stem Cells/cytology , Neurogenesis/genetics , Neurons/cytology , Neurons/metabolism , Olfactory Bulb/cytology , Olfactory Bulb/metabolism , Stem Cell Niche/genetics
3.
Front Neurosci ; 9: 407, 2015.
Article in English | MEDLINE | ID: mdl-26576147

ABSTRACT

A single asymmetric division by an adult neural stem cell (NSC) ultimately generates dozens of differentiated progeny, a feat made possible by the proliferative expansion of transit-amplifying progenitor cells (TAPs). Although NSC activation and TAP expansion is determined by pro- and anti-proliferative signals found within the niche, remarkably little is known about how these cells integrate simultaneous conflicting signals. We investigated this question focusing on the subventricular zone (SVZ) niche of the adult murine forebrain. Using primary cultures of SVZ cells, we demonstrate that Epidermal Growth Factor (EGF) and Bone Morphogenetic Protein (BMP)-2 are particularly powerful pro- and anti-proliferative factors for SVZ-derived neural precursors. Dose-response experiments showed that when simultaneously exposed to both signals, BMP dominantly suppressed EGF-induced proliferation; moreover, this dominance extended to all parameters of neural precursor behavior tested, including inhibition of proliferation, modulation of cell cycle, promotion of differentiation, and increase of cell death. BMP's anti-proliferative effect did not involve inhibition of mTORC1 or ERK signaling, key mediators of EGF-induced proliferation, and had distinct stage-specific consequences, promoting TAP differentiation but NSC quiescence. In line with these in vitro data, in vivo experiments showed that exogenous BMP limits EGF-induced proliferation of TAPs while inhibition of BMP-SMAD signaling promotes activation of quiescent NSCs. These findings clarify the stage-specific effects of BMPs on SVZ neural precursors, and support a hierarchical model in which the anti-proliferative effects of BMP dominate over EGF proliferation signaling to constitutively drive TAP differentiation and NSC quiescence.

4.
Stem Cell Reports ; 3(2): 312-23, 2014 Aug 12.
Article in English | MEDLINE | ID: mdl-25254344

ABSTRACT

In the adult brain, self-renewal is essential for the persistence of neural stem cells (NSCs) throughout life, but its regulation is still poorly understood. One NSC can give birth to two NSCs or one NSC and one transient progenitor. A correct balance is necessary for the maintenance of germinal areas, and understanding the molecular mechanisms underlying NSC division mode is clearly important. Here, we report a function of the Sonic Hedgehog (SHH) receptor Patched in the direct control of long-term NSC self-renewal in the subependymal zone. We show that genetic conditional activation of SHH signaling in adult NSCs leads to their expansion and the depletion of their direct progeny. These phenotypes are associated in vitro with an increase in NSC symmetric division in a process involving NOTCH signaling. Together, our results demonstrate a tight control of adult neurogenesis and NSC renewal driven by Patched.


Subject(s)
Hedgehog Proteins/metabolism , Neural Stem Cells/cytology , Amino Acid Transport System X-AG/genetics , Animals , Brain/metabolism , Cell Proliferation/drug effects , Hedgehog Proteins/genetics , Kruppel-Like Transcription Factors/metabolism , Mice , Mice, Inbred C57BL , Neural Stem Cells/metabolism , Neurogenesis , Patched Receptors , Receptors, Cell Surface/antagonists & inhibitors , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, Notch/metabolism , Selective Estrogen Receptor Modulators/pharmacology , Signal Transduction , Tamoxifen/pharmacology , Up-Regulation , Zinc Finger Protein GLI1
SELECTION OF CITATIONS
SEARCH DETAIL
...