Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(9): 4646-4660, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38387876

ABSTRACT

While host/guest interactions are widely used to control molecular assembly on surfaces, quantitative information on the effect of surface chemistry on their efficiency is lacking. To address this question, we combined electrochemical characterization with quartz crystal microbalance with dissipation monitoring to study host/guest interactions between surface-attached ferrocene (Fc) guests and soluble ß-cyclodextrin (ß-CD) hosts. We identified several parameters that influence the redox response, ß-CD complexation ability, and repellent properties of Fc monolayers, including the method of Fc grafting, the linker connecting Fc with the surface, and the diluting molecule used to tune Fc surface density. The study on monovalent ß-CD/Fc complexation was completed by the characterization of multivalent interactions between Fc monolayers and ß-CD-functionalized polymers, with new insights being obtained on the interplay between the surface chemistry, binding efficiency, and reversibility under electrochemical stimulus. These results should facilitate the design of well-defined functional interfaces and their implementation in stimuli-responsive materials and sensing devices.

2.
Langmuir ; 39(50): 18410-18423, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38049433

ABSTRACT

The formation of surfaces decorated with biomacromolecules such as proteins, glycans, or nucleic acids with well-controlled orientations and densities is of critical importance for the design of in vitro models, e.g., synthetic cell membranes and interaction assays. To this effect, ligand molecules are often functionalized with an anchor that specifically binds to a surface with a high density of binding sites, providing control over the presentation of the molecules. Here, we present a method to robustly and quantitatively control the surface density of one or several types of anchor-bearing molecules by tuning the relative concentrations of target molecules and free anchors in the incubation solution. We provide a theoretical background that relates incubation concentrations to the final surface density of the molecules of interest and present effective guidelines toward optimizing incubation conditions for the quantitative control of surface densities. Focusing on the biotin anchor, a commonly used anchor for interaction studies, as a salient example, we experimentally demonstrate surface density control over a wide range of densities and target molecule sizes. Conversely, we show how the method can be adapted to quality control the purity of end-grafted biopolymers such as biotinylated glycosaminoglycans by quantifying the amount of residual free biotin reactant in the sample solution.


Subject(s)
Biotin , Biotin/chemistry , Cell Membrane , Biopolymers
3.
ACS Synth Biol ; 11(10): 3516-3528, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36194500

ABSTRACT

The cell wall constitutes a fundamental structural component of plant cells, providing them with mechanical resistance and flexibility. Mimicking this wall is a critical step in the conception of an experimental model of the plant cell. The assembly of cellulose/hemicellulose in the form of cellulose nanocrystals and xyloglucans as a representative model of the plant cell wall has already been mastered; however, these models lacked the pectin component. In this work, we used an engineered chimeric protein designed for bridging pectin to the cellulose/hemicellulose network, therefore achieving the assembly of complete cell wall mimics. We first engineered a carbohydrate-binding module from Ruminococcus flavefaciens able to bind oligogalacturonan, resulting in high-affinity polygalacturonan receptors with Kd in the micromolar range. A Janus protein, with cell wall gluing property, was then designed by assembling this carbohydrate-binding module with a Ralstonia solanacearum lectin specific for fucosylated xyloglucans. The resulting supramolecular architecture is able to bind fucose-containing xyloglucans and homogalacturonan, ensuring high affinity for both. A two-dimensional assembly of an artificial plant cell wall was then built first on synthetic polymer and then on the supported lipid bilayer. Such an artificial cell wall can serve as a basis for the development of plant cell mechanical models and thus deepen the understanding of the principles underlying various aspects of plant cells and tissues.


Subject(s)
Lipid Bilayers , Plant Cells , Plant Cells/metabolism , Lipid Bilayers/metabolism , Fucose/metabolism , Cell Wall/metabolism , Polysaccharides/metabolism , Pectins/analysis , Pectins/chemistry , Pectins/metabolism , Cellulose/metabolism , Lectins/analysis , Lectins/metabolism , Recombinant Fusion Proteins/metabolism
4.
Analyst ; 147(19): 4197-4205, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-35983869

ABSTRACT

Surface plasmon resonance (SPR) is an optical, real-time and label-free technique which represents a standard to study biomolecular interactions. While SPR signals are usually positive upon recognition, a few cases of negative signals have been reported because of significant conformational transition of the receptor upon the recognition of the target. In this study, we reported on the observation of negative or null SPR signals for an aptamer recognition with its low molecular weight target. The introduction of a spacer group for the aptamer immobilization led to a null SPR signal despite the device sensitivity and effective target recognition (a KD around 200 nM as demonstrated using a quartz crystal microbalance with dissipation monitoring and isothermal titration calorimetry). We demonstrated that this unconventional signal could be attributed to two opposite contributions: a positive one is afforded by the aptamer recognition and folding whereas a negative one results from the refractive index increment (RII) deviation upon the formation of the complex (ligand/analyte). We also demonstrated that the RII deviation is sensitive to the modification of the sequence flexibility and therefore depends on the anchoring procedure and the spacer length between the anchoring function and the site of recognition.


Subject(s)
Oligonucleotides , Surface Plasmon Resonance , Calorimetry , Ligands , Surface Plasmon Resonance/methods
5.
Langmuir ; 37(37): 10971-10978, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34478305

ABSTRACT

Despite numerous studies emphasizing the plasmonic impact on fluorescence, the design of a dynamic system allowing on-demand fluorescence switching in a single nanostructure remains challenging. The reversibility of fluorescence switching and the versatility of the approach, in particular its compatibility with a wide range of nanoparticles and fluorophores, are among the main experimental difficulties. In this work, we achieve reversible fluorescence switching by coupling metal nanoparticles with fluorophores through stimuli-responsive organic linkers. As a proof of concept, we link gold nanoparticles with fluorescein through thermoresponsive poly(N-isopropylacrylamide) at a tunable grafting density and characterize their size and optical response by dynamic light scattering, absorption, and fluorescence spectroscopies. We show that the fluorescence emission of these hybrid nanostructures can be switched on-demand using the thermoresponsive properties of poly(N-isopropylacrylamide). The described system presents a general strategy for the design of nanointerfaces, exhibiting reversible fluorescence switching via external control of metal nanoparticle/fluorophore distance.

6.
Chemphyschem ; 22(21): 2231-2239, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34397150

ABSTRACT

Among non-covalent bonds, the host-guest interaction is an attractive way to attach biomolecules to solid surfaces since the binding strength can be tuned by the nature of host and guest partners or through the valency of the interaction. For that purpose, we synthesized cyclodecapeptide scaffolds exhibiting in a spatially controlled manner two independent domains enabling the multimeric presentation of guest molecules on one face and the other face enabling the potential grafting of a biomolecule of interest. In this work, we were interested in the ß-cyclodextrin/ferrocene inclusion complex formed on ß-CD monolayers functionalized surfaces. By using surface sensitive techniques such as quartz crystal microbalance and surface plasmon resonance, we quantified the influence of the guest valency on the stability of the inclusion complexes. The results show a drastic enhancement of the affinity with the gradual increase of guest valency. Considering that the sequential binding events are equal and independent, we applied the multivalent model developed by the Huskens group to extract intrinsic binding constants and an effective concentration of host.


Subject(s)
Metallocenes/chemistry , Peptides, Cyclic/chemistry , beta-Cyclodextrins/chemistry , Molecular Structure , Peptides, Cyclic/chemical synthesis , Surface Properties
7.
Anal Chem ; 93(17): 6865-6872, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33881841

ABSTRACT

Antibodies not only play a major role in clinical diagnostics and biopharmaceutical analysis but also are a class of drugs that are regularly used to treat numerous diseases. The identification of antibody-epitope binding sites is then of great interest to many emerging medical and bioanalytical applications, particularly to design monoclonal antibodies (mAb) mimics taking advantage of amino acid residues involved in the binding. Among relevant antibodies, the monoclonal antibody rituximab has received significant attention as it is exploited to treat several cancers including non-Hodgkin's lymphoma and chronic lymphocytic leukemia, as well as some autoimmune disorders such as rheumatoid arthritis. The binding of rituximab to the targeted cells occurs via the recognition of the CD20 epitope. A crystallographic study has shown that the binding area, named paratope, is located at the surface of rituximab. Combining the SPOT method and the complementary surface plasmon resonance technique allowed us to detect an extended recognition domain buried in the pocket of the rituximab Fab formed by four ß-sheets. More generally, the present study offers a comprehensive approach to identify antibody-epitope binding sites.


Subject(s)
Antigens, CD20 , Surface Plasmon Resonance , Antibodies, Monoclonal, Murine-Derived , Binding Sites , Epitopes , Rituximab
8.
ACS Sens ; 5(8): 2326-2330, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32786219

ABSTRACT

The direct biolayer interferometry (BLI) measurement of low-molecular-weight (LMW) analytes (<200 Da) still represents a challenge, in particular, when low receptor densities are used. BLI is a powerful optical technique for the label-free, real-time characterization and quantification of biomolecular interactions at interfaces. We demonstrate herein that the quantification of biomolecular recognition is possible by BLI using either 2D-like or 3D platforms for aptamer ligand immobilization. The influence of the aptamer density on the interaction was evaluated and compared for the two sensor architectures. Despite the LMW of the analyte, BLI monitoring led to signals that are exploitable for affinity and kinetic studies, even at low aptamer density. We demonstrate that the immobilization format as well as the aptamer density has a crucial influence on the determination of the recognition parameters.


Subject(s)
Biosensing Techniques , Interferometry , Kinetics , Ligands
9.
Anal Chem ; 92(7): 5396-5403, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32200619

ABSTRACT

Understanding antigen-antibody interactions is important to many emerging medical and bioanalytical applications. In particular, the levels of antigen expression at the cell surface may determine antibody-mediated cell death. This parameter has a clear effect on outcome in patients undergoing immunotherapy. In this context, CD20 which is expressed in the membrane of B cells has received significant attention as target for immunotherapy of leukemia and lymphoma using the monoclonal antibody rituximab. To systematically study the impact of CD20 density on antibody recognition, we designed self-assembled monolayers that display tunable CD20 epitope densities. For this purpose, we developed in situ click chemistry to functionalize SPR sensor chips. We find that the rituximab binding affinity depends sensitively and nonmonotonously on CD20 surface density. Strongest binding, with an equilibrium dissociation constant (KD = 32 nM) close to values previously reported from in vitro analysis with B cells (apparent KD between 5 and 19 nM), was obtained for an average inter-antigen spacing of 2 nm. This distance is required for improving rituximab recognition, and in agreement with the known requirement of CD20 to form clusters to elicit a biological response. More generally, this study offers an interesting outlook in the understanding of the necessity of epitope clusters for effective mAb recognition.


Subject(s)
Antibodies, Monoclonal/immunology , Antigens/immunology , Click Chemistry , Kinetics , Rituximab/immunology , Surface Plasmon Resonance
10.
Langmuir ; 36(6): 1474-1483, 2020 02 18.
Article in English | MEDLINE | ID: mdl-31904979

ABSTRACT

The deposition of cellulose nanocrystals (CNCs) on a supported lipid bilayer (SLB) was investigated at different length scales. Quartz crystal microbalance with dissipation monitoring (QCM-D) was used to probe the bilayer formation and to show for the first time the CNC deposition onto the SLB. Specifically, classical QCM-D measurements gave estimation of the adsorbed hydrated mass and the corresponding film thickness, whereas complementary experiments using D2O as the solvent allowed the quantitative determination of the hydration of the CNC layer, showing a high hydration value. Scanning force microscopy (SFM) and total internal reflection fluorescence microscopy (TIRF) were used to probe the homogeneity of the deposited layers, revealing the structural details at the particle and film length scales, respectively, thus giving information on the effect of CNC concentration on the surface coverage. The results showed that the adsorption of CNCs on the supported lipid membrane depended on lipid composition, CNC concentration, and pH conditions, and that the binding process was governed by electrostatic interactions. Under suitable conditions, a uniform film was formed, with thickness corresponding to a CNC monolayer, which provides the basis for a relevant 2D model of a primary plant cell wall.


Subject(s)
Cellulose , Nanoparticles , Adsorption , Lipid Bilayers , Quartz Crystal Microbalance Techniques
11.
Matrix Biol ; 78-79: 47-59, 2019 05.
Article in English | MEDLINE | ID: mdl-30633963

ABSTRACT

Cell-cell and cell-glycocalyx interactions under flow are important for the behaviour of circulating cells in blood and lymphatic vessels. However, such interactions are not well understood due in part to a lack of tools to study them in defined environments. Here, we develop a versatile in vitro platform for the study of cell-glycocalyx interactions in well-defined physical and chemical settings under flow. Our approach is demonstrated with the interaction between hyaluronan (HA, a key component of the endothelial glycocalyx) and its cell receptor CD44. We generate HA brushes in situ within a microfluidic device, and demonstrate the tuning of their physical (thickness and softness) and chemical (density of CD44 binding sites) properties using characterisation with reflection interference contrast microscopy (RICM) and application of polymer theory. We highlight the interactions of HA brushes with CD44-displaying beads and cells under flow. Observations of CD44+ beads on a HA brush with RICM enabled the 3-dimensional trajectories to be generated, and revealed interactions in the form of stop and go phases with reduced rolling velocity and reduced distance between the bead and the HA brush, compared to uncoated beads. Combined RICM and bright-field microscopy of CD44+ AKR1 T-lymphocytes revealed complementary information about the dynamics of cell rolling and cell morphology, and highlighted the formation of tethers and slings, as they interacted with a HA brush under flow. This platform can readily incorporate more complex models of the glycocalyx, and should permit the study of how mechanical and biochemical factors are orchestrated to enable highly selective blood cell-vessel wall interactions under flow.


Subject(s)
Glycocalyx/metabolism , Hyaluronan Receptors/metabolism , Hyaluronic Acid/metabolism , T-Lymphocytes/cytology , Biomechanical Phenomena , Cell Communication , Cells, Cultured , Endothelial Cells/cytology , Endothelial Cells/metabolism , Humans , Hyaluronan Receptors/genetics , Microfluidic Analytical Techniques/methods , Microscopy, Interference , T-Lymphocytes/metabolism , Transfection
12.
Chem Sci ; 9(39): 7634-7641, 2018 Oct 21.
Article in English | MEDLINE | ID: mdl-30393524

ABSTRACT

We engineered the first chimeric, bispecific lectin, with two rationally oriented and distinct recognition surfaces. This lectin, coined Janus lectin in allusion to the two-faced roman god, is able to bind independently to both fucosylated and sialylated glycoconjugates. The multivalent presentation of binding sites on each face of the Janus lectin is very efficient, resulting in avidities in the low nanomolar range for both fucosylated and sialylated surfaces. Moreover, novel heterovalent, bifunctional glycoclusters were synthetized that match the topology of the Janus lectin. Based on these tools, we constructed organized and controlled supramolecular architectures by assembling Janus lectin and glycocompound layer-by-layer. Furthermore, the Janus lectin was employed as biomolecular linker to organize protocells made from giant unilamellar vesicles of different nature, to more complex prototissues. In summary, tailor-made Janus lectins open wide possibilities for creating biomimetic matrices or artificial tissues.

13.
Biomaterials ; 123: 24-38, 2017 04.
Article in English | MEDLINE | ID: mdl-28152381

ABSTRACT

The chemokine CXCL12α is a potent chemoattractant that guides the migration of muscle precursor cells (myoblasts) during myogenesis and muscle regeneration. To study how the molecular presentation of chemokines influences myoblast adhesion and motility, we designed multifunctional biomimetic surfaces as a tuneable signalling platform that enabled the response of myoblasts to selected extracellular cues to be studied in a well-defined environment. Using this platform, we demonstrate that CXCL12α, when presented by its natural extracellular matrix ligand heparan sulfate (HS), enables the adhesion and spreading of myoblasts and facilitates their active migration. In contrast, myoblasts also adhered and spread on CXCL12α that was quasi-irreversibly surface-bound in the absence of HS, but were essentially immotile. Moreover, co-presentation of the cyclic RGD peptide as integrin ligand along with HS-bound CXCL12α led to enhanced spreading and motility, in a way that indicates cooperation between CXCR4 (the CXCL12α receptor) and integrins (the RGD receptors). Our findings reveal the critical role of HS in CXCL12α induced myoblast adhesion and migration. The biomimetic surfaces developed here hold promise for mechanistic studies of cellular responses to different presentations of biomolecules. They may be broadly applicable for dissecting the signalling pathways underlying receptor cross-talks, and thus may guide the development of novel biomaterials that promote highly specific cellular responses.


Subject(s)
Cell Adhesion/physiology , Cell Movement/physiology , Chemokine CXCL12/metabolism , Extracellular Matrix/metabolism , Heparitin Sulfate/metabolism , Myoblasts/physiology , Animals , Cell Line , Extracellular Matrix Proteins/metabolism , Mice , Myoblasts/cytology , Protein Binding
14.
Anal Chem ; 88(23): 11963-11971, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27934108

ABSTRACT

Nucleic acid aptamers are involved in a broad field of applications ranging from therapeutics to analytics. Deciphering the binding mechanisms between aptamers and small ligands is therefore crucial to improve and optimize existing applications and to develop new ones. Particularly interesting is the enantiospecific binding mechanism involving small molecules with nonprestructured aptamers. One archetypal example is the chiral binding between l-tyrosinamide and its 49-mer aptamer for which neither structural nor mechanistic information is available. In the present work, we have taken advantage of a multiple analytical characterization strategy (i.e., using electroanalytical techniques such as kinetic rotating droplet electrochemistry, fluorescence polarization, isothermal titration calorimetry, and quartz crystal microbalance) for interpreting the nature of binding process. Screening of the binding thermodynamics and kinetics with a wide range of aptamer sequences revealed the lack of symmetry between the two ends of the 23-mer minimal binding sequence, showing an unprecedented influence of the 5' aptamer modification on the bimolecular binding rate constant kon and no significant effect on the dissociation rate constant koff. The results we have obtained lead us to conclude that the enantiospecific binding reaction occurs through an induced-fit mechanism, wherein the ligand promotes a primary nucleation binding step near the 5'-end of the aptamer followed by a directional folding of the aptamer around its target from 5'-end to 3'-end. Functionalization of the 5'-end position by a chemical label, a polydA tail, a protein, or a surface influences the kinetic/thermodynamic constants up to 2 orders of magnitude in the extreme case of a surface immobilized aptamer, while significantly weaker effect is observed for a 3'-end modification. The reason is that steric hindrance must be overcome to nucleate the binding complex in the presence of a modification near the nucleation site.


Subject(s)
Aptamers, Nucleotide/chemistry , Calorimetry , Electrochemical Techniques , Fluorescence Polarization , Quartz Crystal Microbalance Techniques , Small Molecule Libraries/chemistry , Base Sequence , Binding Sites , Kinetics , Ligands , Thermodynamics
15.
Open Biol ; 5(8)2015 Aug.
Article in English | MEDLINE | ID: mdl-26269427

ABSTRACT

The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains--their local density, orientation, conformation and lateral mobility--and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors.


Subject(s)
Cytokines/metabolism , Heparitin Sulfate/chemistry , Intercellular Signaling Peptides and Proteins/chemistry , Chemokine CXCL12/chemistry , Chemokine CXCL12/metabolism , Cytokines/chemistry , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Glycosaminoglycans/chemistry , Glycosaminoglycans/metabolism , Heparitin Sulfate/metabolism , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Models, Molecular , Molecular Conformation , Protein Binding
16.
Anal Chem ; 87(15): 7566-74, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26122480

ABSTRACT

Aptamers have emerged as promising biorecognition elements in the development of biosensors. The present work focuses on the application of quartz crystal microbalance with dissipation monitoring (QCM-D) for the enantioselective detection of a low molecular weight target molecule (less than 200 Da) by aptamer-based sensors. While QCM-D is a powerful technique for label-free, real-time characterization and quantification of molecular interactions at interfaces, the detection of small molecules interacting with immobilized receptors still remains a challenge. In the present study, we take advantage of the aptamer conformational changes upon the target binding that induces displacement of water acoustically coupled to the sensing layer. As a consequence, this phenomenon leads to a significant enhancement of the detection signal. The methodology is exemplified with the enantioselective recognition of a low molecular weight model compound, L-tyrosinamide (L-Tym). QCM-D monitoring of L-Tym interaction with the aptamer monolayer leads to an appreciable signal that can be further exploited for analytical purposes or thermodynamics studies. Furthermore, in situ combination of QCM-D with spectroscopic ellipsometry unambiguously demonstrates that the conformational change induces a nanometric decrease of the aptamer monolayer thickness. Since QCM-D is sensitive to the whole mass of the sensing layer including water that is acoustically coupled, a decrease in thickness of the highly hydrated aptamer layer induces a sizable release of water that can be easily detected by QCM-D.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques , Chemistry Techniques, Analytical/methods , Molecular Weight , Quartz Crystal Microbalance Techniques , Small Molecule Libraries/analysis , Tyrosine/analogs & derivatives , Tyrosine/chemistry
17.
J Mater Chem B ; 3(9): 1801-1812, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-32262253

ABSTRACT

The Bell-Evans theory relative to rupture forces between non-covalently interacting molecules predicts that the rupture force increases linearly with the logarithm of the force loading rate. Here we investigate by force spectroscopy performed with an atomic force microscope (AFM) the rupture forces between surfaces covered by ß-cyclodextrin (ß-CD) molecules and AFM tips coated with adamantane (AD) groups. The ß-CD molecules are either deposited through a self-assembled monolayer (SAM) or grafted on poly(allylamine hydrochloride) chains (PAH-CD) that are adsorbed on the substrate. The AD groups are fixed covalently on the AFM tip through either a one-AD or a four-AD platform linked to the tip though a PEO chain. It is found that while the rupture forces between AFM tips covered with tetravalent AD molecules and SAM-CD surfaces do not exceed twice those found with tips covered by monovalent AD molecules, the rupture forces increase by a factor of 20 on PAH-CD substrates for a tetravalent AD covered tip compared to a monovalent one. Thus, there seems to exist a synergistic effect between the molecule multivalence and the polymeric nature of the CD-covered substrate. As found in the literature, we observe an increase of the intensity of the rupture forces between the AD-covered AFM tip and the ß-CD covered substrate with the contact time over timescales up to several seconds. Finally, we find that when the host-guest system involves the multivalency of the AD guest and/or the polymeric nature of the host the mean rupture force decreases with the loading rate in contrast to what is predicted by the Bell-Evans theory. We tentatively explain this "anti-Bell-Evans" behavior by the possibility of rebinding during the rupture process. This effect should have important implications in the understanding of forces at the cellular level.

18.
J Mater Chem B ; 3(15): 3098, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-32262510

ABSTRACT

Correction for 'Multivalency: influence of the residence time and the retraction rate on rupture forces measured by AFM' by Jalal Bacharouche et al., J. Mater. Chem. B, 2015, 3, 1801-1812.

19.
Chem Commun (Camb) ; 50(96): 15148-51, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25338834

ABSTRACT

We demonstrate the quartz crystal microbalance as a novel method to quantify the reaction yields and stability of the terminal conjugation of chemically complex molecules. Oxime ligation is identified as a facile, broadly applicable method for the reducing-end conjugation of glycosaminoglycans that overcomes the limited stability and yield of popular hydrazone ligation.


Subject(s)
Glycosaminoglycans/chemistry , Heparitin Sulfate/chemistry , Hyaluronic Acid/chemistry , Hydrazones/chemistry , Oximes/chemistry , Quartz Crystal Microbalance Techniques
20.
Biomaterials ; 35(32): 8903-15, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25088726

ABSTRACT

Glycosaminoglycans (GAGs) are ubiquitously present at the cell surface and in extracellular matrix, and crucial for matrix assembly, cell-cell and cell-matrix interactions. The supramolecular presentation of GAG chains, along with other matrix components, is likely to be functionally important but remains challenging to control and to characterize, both in vivo and in vitro. We present a method to create well-defined biomimetic surfaces that display GAGs, either alone or together with other cell ligands, in a background that suppresses non-specific binding. Through the design of the immobilization platform - a streptavidin monolayer serves as a molecular breadboard for the attachment of various biotinylated ligands - and a set of surface-sensitive in situ analysis techniques (including quartz crystal microbalance and spectroscopic ellipsometry), the biomimetic surfaces are tailor made with tight control on biomolecular orientation, surface density and lateral mobility. Analysing the interactions between a selected GAG (heparan sulphate, HS) and the HS-binding chemokine CXCL12α (also called SDF-1α), we demonstrate that these surfaces are versatile for biomolecular and cellular interaction studies. T-lymphocytes are found to adhere specifically to surfaces presenting CXCL12α, both when reversibly bound through HS and when irreversibly immobilized on the inert surface, even in the absence of any bona fide cell adhesion ligand. Moreover, surfaces which present both HS-bound CXCL12α and the intercellular adhesion molecule 1 (ICAM-1) synergistically promote cell adhesion. Our surface biofunctionalization strategy should be broadly applicable for functional studies that require a well-defined supramolecular presentation of GAGs along with other matrix or cell-surface components.


Subject(s)
Biomimetics/methods , Cell Membrane/chemistry , Chemokine CXCL12/chemistry , Glycosaminoglycans/chemistry , Intercellular Adhesion Molecule-1/chemistry , Biotinylation , Cell Adhesion , Extracellular Matrix/chemistry , Fibronectins/chemistry , Heparitin Sulfate/chemistry , Humans , Jurkat Cells , Ligands , Models, Molecular , Protein Binding , Recombinant Proteins/chemistry , Serum Albumin, Bovine/chemistry , Streptavidin/chemistry , Surface Plasmon Resonance , Surface Properties , T-Lymphocytes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...