Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Fluids Barriers CNS ; 21(1): 33, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589879

ABSTRACT

BACKGROUND: The blood-brain barrier (BBB) is pivotal for the maintenance of brain homeostasis and it strictly regulates the cerebral transport of a wide range of endogenous compounds and drugs. While fasting is increasingly recognized as a potential therapeutic intervention in neurology and psychiatry, its impact upon the BBB has not been studied. This study was designed to assess the global impact of fasting upon the repertoire of BBB transporters. METHODS: We used a combination of in vivo and in vitro experiments to assess the response of the brain endothelium in male rats that were fed ad libitum or fasted for one to three days. Brain endothelial cells were acutely purified and transcriptionaly profiled using RNA-Seq. Isolated brain microvessels were used to assess the protein expression of selected BBB transporters through western blot. The molecular mechanisms involved in the adaptation to fasting were investigated in primary cultured rat brain endothelial cells. MCT1 activity was probed by in situ brain perfusion. RESULTS: Fasting did not change the expression of the main drug efflux ATP-binding cassette transporters or P-glycoprotein activity at the BBB but modulated a restrictive set of solute carrier transporters. These included the ketone bodies transporter MCT1, which is pivotal for the brain adaptation to fasting. Our findings in vivo suggested that PPAR δ, a major lipid sensor, was selectively activated in brain endothelial cells in response to fasting. This was confirmed in vitro where pharmacological agonists and free fatty acids selectively activated PPAR δ, resulting in the upregulation of MCT1 expression. Moreover, dosing rats with a specific PPAR δ antagonist blocked the upregulation of MCT1 expression and activity induced by fasting. CONCLUSIONS: Altogether, our study shows that fasting affects a selected set of BBB transporters which does not include the main drug efflux transporters. Moreover, we describe a previously unknown selective adaptive response of the brain vasculature to fasting which involves PPAR δ and is responsible for the up-regulation of MCT1 expression and activity. Our study opens new perspectives for the metabolic manipulation of the BBB in the healthy or diseased brain.


Subject(s)
Blood-Brain Barrier , PPAR delta , Rats , Male , Animals , Blood-Brain Barrier/metabolism , PPAR delta/metabolism , Endothelial Cells/metabolism , Membrane Transport Proteins/metabolism , Brain/metabolism , Fasting
2.
Sci Rep ; 8(1): 12272, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30116021

ABSTRACT

Brain mural cells form a heterogeneous family which significantly contributes to the maintenance of the blood-brain barrier and regulation of the cerebral blood flow. Current procedures to isolate them cannot specifically separate their distinct subtypes, in particular vascular smooth muscle cells (VSMCs) and mid-capillary pericytes (mcPCs), which differ among others by their expression of smooth muscle actin (SMA). We herein describe an innovative method allowing SMA+ VSMCs and SMA- mcPCs to be freshly isolated from the rat cerebral cortex. Using differential RNA-Seq analysis, we then reveal the specific gene expression profile of each subtype. Our results refine the current description of the role of VSMCs in parenchymal cortical arterioles at the molecular level and provide a unique platform to identify the molecular mechanisms underlying the specific functions of mcPCs in the brain vasculature.


Subject(s)
Brain/blood supply , Capillaries/cytology , Gene Expression Profiling , Muscle, Smooth, Vascular/cytology , Pericytes/metabolism , Animals , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
3.
Toxicology ; 305: 99-108, 2013 Mar 08.
Article in English | MEDLINE | ID: mdl-23376546

ABSTRACT

While most deaths from asphyxia related to buprenorphine (BUP) overdose have been reported in males, higher plasma concentrations of BUP and its toxic metabolite norbuprenorphine (NBUP) have been observed in females. We previously demonstrated that P-glycoprotein (P-gp) modulation at the blood-brain barrier (BBB) contributes highly to BUP-related respiratory toxicity, by limiting NBUP entrance into the brain. In this work, we sought to investigate the role of P-gp-mediated transport at the BBB in gender and strain-related variability of BUP and NBUP-induced respiratory effects in mice. Ventilation was studied using plethysmography, P-gp expression using western blot, and transport at the BBB using in situ cerebral perfusion. In male Fvb and Swiss mice, BUP was responsible for ceiling respiratory effects. NBUP-related reduction in minute volume was dose-dependent but more marked in Fvb (p<0.01 at 1mg/kg NBUP and p<0.001 at 3 and 9mg/kg NBUP) than in Swiss mice (p<0.001 at 9mg/kg NBUP). Female Fvb mice were more susceptible to BUP than males with significantly increased inspiratory time (p<0.05) and to NBUP with significantly increased expiratory time (p<0.01). Following BUP administration, plasma BUP concentrations were significantly higher (p<0.01) and plasma NBUP concentrations significantly lower (p<0.001) in Fvb mice compared to Swiss mice. Plasma BUP concentrations were significantly higher (p<0.05) and plasma NBUP concentrations significantly lower (p<0.01) in male compared to female Fvb mice. In contrast, following NBUP administration, comparable plasma NBUP concentrations were observed in both genders and strains. No differences in P-gp expression or BUP and NBUP transport across the BBB were observed between male and female Fvb mice as well as between Swiss and Fvb mice. Our results suggest that P-gp-mediated transport across the BBB does not play a key-role in gender and strain-related variability in BUP and NBUP-induced respiratory toxicity in mice. Both gender- and strain-related differences in respiratory effects of BUP could be attributed to BUP itself rather than to its metabolite, NBUP.


Subject(s)
Buprenorphine/toxicity , Narcotics/toxicity , Respiratory Insufficiency/chemically induced , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology , Animals , Blood-Brain Barrier/metabolism , Blotting, Western , Capillaries/drug effects , Capillaries/metabolism , Cerebrovascular Circulation , Dose-Response Relationship, Drug , Female , Male , Mice , Plethysmography, Whole Body , Respiratory Insufficiency/physiopathology , Sex Characteristics , Species Specificity
4.
J Cereb Blood Flow Metab ; 32(11): 1989-2001, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22850405

ABSTRACT

Uptake1 and uptake2 transporters are involved in the extracellular clearance of biogenic amine neurotransmitters at synaptic clefts. We looked for them at the blood-brain barrier (BBB) and blood-retina barriers (BRB), where they could be involved in regulating the neurotransmitter concentration and modulate/terminate receptor-mediated effects within the neurovascular unit (NVU). Uptake2 (Oct1-3/Slc22a1-3, Pmat/Slc29a4) and Mate1/Slc47a1 transporters are also involved in the transport of xenobiotics. We used in situ carotid perfusion of prototypic substrates like [(3)H]-1-methyl-4-phenylpyridinium ([(3)H]-MPP(+)), [(3)H]-histamine, [(3)H]-serotonin, and [(3)H]-dopamine, changes in ionic composition and genetic deletion of Oct1-3 carriers to detect uptake1 and uptake2 at the BBB and BRB. We showed that uptake1 and uptake2 are involved in the transport of [(3)H]-dopamine and [(3)H]-MPP(+) at the blood luminal BRB, but not at the BBB. These functional studies, together with quantitative RT-PCR and confocal imaging, suggest that the mouse BBB lacks uptake1 (Net/Slc6a2, Dat/Slc6a3, Sert/Slc6a4), uptake2, and Mate1 on both the luminal and abluminal sides. However, we found evidence for functional Net and Oct1 transporters at the luminal BRB. These heterogeneous transport properties of the brain and retina NVUs suggest that the BBB helps protect the brain against biogenic amine neurotransmitters in the plasma while the BRB has more of a metabolic/endocrine role.


Subject(s)
Biogenic Amines/metabolism , Blood-Brain Barrier/metabolism , Neurotransmitter Agents/metabolism , Retina/metabolism , Algorithms , Animals , Capillaries/metabolism , Carrier Proteins/metabolism , Cerebral Cortex/blood supply , Cerebral Cortex/metabolism , Dopamine/metabolism , Immunochemistry , Immunohistochemistry , Kidney/metabolism , Male , Membrane Transport Proteins/metabolism , Mice , Microscopy, Confocal , Neurons/metabolism , Polymerase Chain Reaction , RNA/biosynthesis , Serotonin/metabolism , Tissue Distribution
5.
J Cereb Blood Flow Metab ; 32(1): 81-92, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21792241

ABSTRACT

While phenotypic endothelial heterogeneity is well documented in peripheral organs, it is only now being explored in the brain. We used confocal imaging of thick sections of rat brain to qualitatively and quantitatively examine the expression of two key markers of the blood-brain barrier (BBB) in the rat, P-glycoprotein (P-gp), and endothelial barrier antigen (EBA). We found that these markers were not uniformly distributed throughout the whole vasculature of the cortex and hippocampus. P-glycoprotein displayed a gradient of expression from an almost undetectable level in large penetrating arterioles to a high and uniform level in capillaries and venules. While EBA was lacking in all cerebral arterioles, regardless of their size, its expression varied greatly among endothelial cells in capillaries and venules, yielding a striking mosaic pattern. A detailed quantitative analysis of the distribution of these markers at the single cell level in capillaries is provided. These results challenge the view of a uniform BBB and suggest that regulatory mechanisms might differentially modulate BBB features not only among arterioles/capillaries/venules but also at the single cell level within the capillaries. Hypotheses are made regarding the underlying mechanisms and physiopathological consequences of this heterogeneity.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis , Antigens, Surface/biosynthesis , Brain/blood supply , Endothelium, Vascular/metabolism , Microvessels/metabolism , Microvessels/ultrastructure , Animals , Biomarkers/analysis , Biomarkers/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/ultrastructure , Brain/metabolism , Brain/ultrastructure , Endothelium, Vascular/ultrastructure , Male , Microscopy, Confocal , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...