Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Mol Microbiol ; 118(6): 744-764, 2022 12.
Article in English | MEDLINE | ID: mdl-36385554

ABSTRACT

Coxiella burnetii is the causative agent of Q fever. All C. burnetii isolates encode either an autonomously replicating plasmid (QpH1, QpDG, QpRS, or QpDV) or QpRS-like chromosomally integrated plasmid sequences. The role of the ORFs present in these sequences is unknown. Here, the role of the ORFs encoded on QpH1 was investigated. Using a new C. burnetii shuttle vector (pB-TyrB-QpH1ori), we cured the C. burnetii Nine Mile Phase II strain of QpH1. The ΔQpH1 strain grew normally in axenic media but had a significant growth defect in Vero cells, indicating QpH1 was important for C. burnetii virulence. We developed an inducible CRISPR interference system to examine the role of individual QpH1 plasmid genes. CRISPRi of cbuA0027 resulted in significant growth defects in axenic media and THP-1 cells. The cbuA0028/cbuA0027 operon encodes CBUA0028 (ToxP) and CBUA0027 (AntitoxP), which are homologous to the HigB2 toxin and HigA2 antitoxin, respectively, from Vibrio cholerae. Consistent with toxin-antitoxin systems, overexpression of toxP resulted in a severe intracellular growth defect that was rescued by co-expression of antitoxP. ToxP inhibited protein translation. AntitoxP bound the toxP promoter (PtoxP) and ToxP, with the resulting complex binding also PtoxP. In summary, our data indicate that C. burnetii maintains an autonomously replicating plasmid because of a plasmid-based toxin-antitoxin system.


Subject(s)
Coxiella burnetii , Toxin-Antitoxin Systems , Animals , Chlorocebus aethiops , Coxiella burnetii/genetics , Coxiella burnetii/metabolism , Toxin-Antitoxin Systems/genetics , Vero Cells , Plasmids/genetics , Virulence
2.
NPJ Vaccines ; 6(1): 38, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33741986

ABSTRACT

Coxiella burnetii is the bacterial causative agent of the zoonosis Q fever. The current human Q fever vaccine, Q-VAX®, is a fixed, whole cell vaccine (WCV) licensed solely for use in Australia. C. burnetii WCV administration is associated with a dermal hypersensitivity reaction in people with pre-existing immunity to C. burnetii, limiting wider use. Consequently, a less reactogenic vaccine is needed. Here, we investigated contributions of the C. burnetii Dot/Icm type IVB secretion system (T4BSS) and lipopolysaccharide (LPS) in protection and reactogenicity of fixed WCVs. A 32.5 kb region containing 23 dot/icm genes was deleted in the virulent Nine Mile phase I (NMI) strain and the resulting mutant was evaluated in guinea pig models of C. burnetii infection, vaccination-challenge, and post-vaccination hypersensitivity. The NMI ∆dot/icm strain was avirulent, protective as a WCV against a robust C. burnetii challenge, and displayed potentially altered reactogenicity compared to NMI. Nine Mile phase II (NMII) strains of C. burnetii that produce rough LPS, were similarly tested. NMI was significantly more protective than NMII as a WCV; however, both vaccines exhibited similar reactogenicity. Collectively, our results indicate that, like phase I LPS, the T4BSS is required for full virulence by C. burnetii. Conversely, unlike phase I LPS, the T4BSS is not required for vaccine-induced protection. LPS length does not appear to contribute to reactogenicity while the T4BSS may contribute to this response. NMI ∆dot/icm represents an avirulent phase I strain with full vaccine efficacy, illustrating the potential of genetically modified C. burnetii as improved WCVs.

3.
Virulence ; 10(1): 133-150, 2019 12.
Article in English | MEDLINE | ID: mdl-30782062

ABSTRACT

Coxiella burnetii is an intracellular, gram-negative bacterium that causes the zoonosis Q fever. This disease typically presents as an acute flu-like illness with persistent, focalized infections occurring less frequently. Clinical outcomes of Q fever have been associated with distinct genomic groups of C. burnetii, suggesting that gene content is responsible for virulence potential. To investigate this hypothesis, the virulence of thirteen C. burnetii strains (representing genomic groups I-VI) was evaluated in a guinea pig infection model by intraperitoneal injection. Seven strains caused a sustained fever (at least two days ≥39.5°C) in at least half of the animals within each experimental group. At fourteen days post infection, animals were euthanized and additional endpoints were evaluated, including splenomegaly and serology. The magnitude of these endpoints roughly correlated with the onset, duration, and severity of fever. The most severe disease was caused by group I strains. Intermediate and no virulence were evidenced following infection with group II-V and group VI strains, respectively. Flow cytometric analysis of the mesenteric lymph nodes revealed decreased CD4+ T cell frequency following infection with highly virulent group I strains. These findings buttress the hypothesis that the pathogenic potential of C. burnetii strains correlates with genomic grouping. These data, combined with comparative genomics and genetic manipulation, will improve our understanding of C. burnetii virulence determinants.


Subject(s)
Coxiella burnetii/pathogenicity , Q Fever/pathology , Virulence Factors/genetics , Animals , CD4-Positive T-Lymphocytes/immunology , Coxiella burnetii/genetics , Disease Models, Animal , Female , Genome, Bacterial , Guinea Pigs , Q Fever/immunology , Spleen/microbiology , Virulence/genetics
4.
mBio ; 10(1)2019 02 05.
Article in English | MEDLINE | ID: mdl-30723133

ABSTRACT

The Q fever agent Coxiella burnetii is a Gram-negative bacterium that invades macrophages and replicates inside a specialized lysosomal vacuole. The pathogen employs a type 4B secretion system (T4BSS) to deliver effector proteins into the host cell that modify the Coxiella-containing vacuole (CCV) into a replication-permissive niche. Mature CCVs are massive degradative organelles that acquire lysosomal proteins. Inhibition of mammalian (or mechanistic) target of rapamycin complex 1 (mTORC1) kinase by nutrient deprivation promotes autophagy and lysosome fusion, as well as activation of the transcription factors TFE3 and TFEB (TFE3/B), which upregulates expression of lysosomal genes. Here, we report that C. burnetii inhibits mTORC1 as evidenced by impaired localization of mTORC1 to endolysosomal membranes and decreased phosphorylation of elF4E-binding protein 1 (4E-BP1) and S6 kinase 1 in infected cells. Infected cells exhibit increased amounts of autophagy-related proteins protein 1A/1B-light chain 3 (LC3) and p62 as well as of activated TFE3. However, C. burnetii did not accelerate autophagy or block autophagic flux triggered by cell starvation. Activation of autophagy or transcription by TFE3/B increased CCV expansion without enhancing bacterial replication. By contrast, knockdown of tuberous sclerosis complex 1 (TSC1) or TSC2, which hyperactivates mTORC1, impaired CCV expansion and bacterial replication. Together, these data demonstrate that specific inhibition of mTORC1 by C. burnetii, but not amplified cell catabolism via autophagy, is required for optimal pathogen replication. These data reveal a complex interplay between lysosomal function and host cell metabolism that regulates C. burnetii intracellular growth.IMPORTANCECoxiella burnetii is an intracellular pathogenic bacterium that replicates within a lysosomal vacuole. Biogenesis of the Coxiella-containing vacuole (CCV) requires effector proteins delivered into the host cell cytosol by the type 4B secretion system (T4BSS). Modifications to lysosomal physiology required for pathogen replication within the CCV are poorly understood. Mammalian (or mechanistic) target of rapamycin complex 1 (mTORC1) is a master kinase that regulates lysosome structure and function. Nutrient deprivation inhibits mTORC1, which promotes cell catabolism in the form of accelerated autophagy and increased lysosome biosynthesis. Here, we report that C. burnetii growth is enhanced by T4BSS-dependent inhibition of mTORC1 that does not activate autophagy. Canonical inhibition of mTORC1 by starvation or inhibitor treatment that induces autophagic flux does not benefit C. burnetii growth. Furthermore, hyperactivation of mTORC1 impairs bacterial replication. These findings indicate that C. burnetii inhibition of mTORC1 without accelerated autophagy promotes bacterial growth.


Subject(s)
Coxiella burnetii/growth & development , Host-Pathogen Interactions , Macrophages/microbiology , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Phagosomes/microbiology , Humans , THP-1 Cells
5.
J Bacteriol ; 201(8)2019 04 15.
Article in English | MEDLINE | ID: mdl-30745369

ABSTRACT

Coxiella burnetii, the etiological agent of Q fever, undergoes a unique biphasic developmental cycle where bacteria transition from a replicating (exponential-phase) large cell variant (LCV) form to a nonreplicating (stationary-phase) small cell variant (SCV) form. The alternative sigma factor RpoS is an essential regulator of stress responses and stationary-phase physiology in several bacterial species, including Legionella pneumophila, which has a developmental cycle superficially similar to that of C. burnetii Here, we used a C. burnetii ΔrpoS mutant to define the role of RpoS in intracellular growth and SCV development. Growth yields following infection of Vero epithelial cells or THP-1 macrophage-like cells with the rpoS mutant in the SCV form, but not the LCV form, were significantly lower than that of wild-type bacteria. RNA sequencing and whole-cell mass spectrometry of the C. burnetii ΔrpoS mutant revealed that a substantial portion of the C. burnetii genome is regulated by RpoS during SCV development. Regulated genes include those involved in stress responses, arginine transport, peptidoglycan remodeling, and synthesis of the SCV-specific protein ScvA. Genes comprising the dot/icm locus, responsible for production of the Dot/Icm type 4B secretion system, were also dysregulated in the rpoS mutant. These data were corroborated with independent assays demonstrating that the C. burnetii ΔrpoS strain has increased sensitivity to hydrogen peroxide and carbenicillin and a thinner cell wall/outer membrane complex. Collectively, these results demonstrate that RpoS is an important regulator of genes involved in C. burnetii SCV development and intracellular growth.IMPORTANCE The Q fever bacterium Coxiella burnetii has spore-like environmental stability, a characteristic that contributes to its designation as a potential bioweapon. Stability is likely conferred by a highly resistant, small cell variant (SCV) stationary-phase form that arises during a biphasic developmental cycle. Here, we define the role of the alternative sigma factor RpoS in regulating genes associated with SCV development. Genes involved in stress responses, amino acid transport, cell wall remodeling, and type 4B effector secretion were dysregulated in the rpoS mutant. Cellular impairments included defects in intracellular growth, cell wall structure, and resistance to oxidants. These results support RpoS as a central regulator of the Coxiella developmental cycle and identify developmentally regulated genes involved in morphological differentiation.


Subject(s)
Bacterial Proteins/metabolism , Coxiella burnetii/cytology , Coxiella burnetii/growth & development , Gene Expression Regulation, Bacterial , Sigma Factor/metabolism , Animals , Chlorocebus aethiops , Coxiella burnetii/genetics , Cytoplasm/microbiology , Epithelial Cells/microbiology , Gene Deletion , Gene Expression Profiling , Humans , Macrophages/microbiology , Proteomics , Sigma Factor/deficiency , THP-1 Cells , Vero Cells
6.
BMC Microbiol ; 18(1): 33, 2018 04 16.
Article in English | MEDLINE | ID: mdl-29661138

ABSTRACT

BACKGROUND: Many gram-negative bacteria produce an outer membrane phospholipase A (PldA) that plays an important role in outer membrane function and is associated with virulence. RESULTS: In the current study, we characterized a pldA mutant of Coxiella burnetii, an intracellular gram-negative pathogen and the agent of human Q fever. The C. burnetti pldA open reading frame directs synthesis of a protein with conserved PldA active site residues. A C. burnetii ΔpldA deletion mutant had a significant growth defect in THP-1 macrophages, but not axenic medium, that was rescued by complementation. Thin layer chromatography was employed to assess whether pldA plays a role in remodeling membrane lipids during C. burnetii morphological differentiation. Extracted lipids were analyzed from replicating, logarithmic phase large cell variants (LCVs), non-replicating, stationary phase small cell variants (SCVs), and a mixture of LCVs and SCVs. Similar to Escherichia coli, all three forms contained cardiolipin (CL), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE). However, PE and PG were present in lower quantities in the SCV while three additional lipid species were present in higher quantities. Co-migration with standards tentatively identified two of the three SCV-enriched lipids as lyso-phosphatidylethanolamine, a breakdown product of PE, and free fatty acids, which are generally toxic to bacteria. Developmental form lipid modifications required the activity of PldA. CONCLUSIONS: Collectively, these results indicate developmentally-regulated lipid synthesis by C. burnetii contributes to colonization of macrophages and may contribute to the environmental stability and the distinct biological properties of the SCV.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Coxiella burnetii/enzymology , Coxiella burnetii/growth & development , Lipid Metabolism , Macrophages/microbiology , Membrane Lipids/metabolism , Phospholipases A1/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/metabolism , Coxiella burnetii/genetics , Coxiella burnetii/pathogenicity , Cytoplasm/microbiology , Escherichia coli/metabolism , Fatty Acids/metabolism , Genes, Bacterial/genetics , Humans , Open Reading Frames/genetics , Phospholipases A1/genetics , Q Fever/microbiology , Sequence Deletion , THP-1 Cells , Virulence Factors/metabolism
7.
PLoS One ; 12(3): e0173528, 2017.
Article in English | MEDLINE | ID: mdl-28278296

ABSTRACT

Published data show that murine bone marrow-derived macrophages (BMDM) restrict growth of avirulent phase II, but not virulent phase I, Coxiella burnetii. Growth restriction of phase II bacteria is thought to result from potentiated recognition of pathogen-associated molecular patterns, which leads to production of inhibitory effector molecules. Past studies have used conditioned medium from L-929 murine fibroblasts as a source of macrophage-colony stimulating factor (M-CSF) to promote differentiation of bone marrow-derived myeloid precursors into macrophages. However, uncharacterized components of conditioned medium, such as variable amounts of type I interferons, can affect macrophage activation status and their permissiveness for infection. In the current study, we show that the C. burnetii Nine Mile phase II (NMII) strain grows robustly in primary macrophages from C57BL/6J mice when bone marrow cells are differentiated with recombinant murine M-CSF (rmM-CSF). Bacteria were readily internalized by BMDM, and replicated within degradative, LAMP1-positive vacuoles to achieve roughly 3 logs of growth over 6 days. Uninfected BMDM did not appreciably express CD38 or Egr2, markers of classically (M1) and alternatively (M2) activated macrophages, respectively, nor did infection change the lack of polarization. In accordance with an M0 phenotype, infected BMDM produced moderate amounts of TNF and nitric oxide. Similar NMII growth results were obtained using C57BL/6J myeloid progenitors immortalized with an estrogen-regulated Hoxb8 (ER-Hoxb8) oncogene. To demonstrate the utility of the ER-Hoxb8 system, myeloid progenitors from natural resistance-associated macrophage protein 1 (Nramp1) C57BL/6J knock-in mice were transduced with ER-Hoxb8, and macrophages were derived from immortalized progenitors using rmM-CSF and infected with NMII. No difference in growth was observed when compared to macrophages from wild type mice, indicating depletion of metal ions by the Nramp1 transporter does not negatively impact NMII growth. Results with NMII were recapitulated in primary macrophages where C57BL/6J Nramp1+ BMDM efficiently killed Salmonella enterica serovar Typhimurium. M-CSF differentiated murine macrophages from bone marrow and conditional ER-Hoxb8 myeloid progenitors will be useful ex vivo models for studying Coxiella-macrophage interactions.


Subject(s)
Bone Marrow/microbiology , Coxiella burnetii/growth & development , Macrophages/microbiology , Q Fever/microbiology , Animals , Bone Marrow/metabolism , Cells, Cultured , Colony-Stimulating Factors/metabolism , Coxiella burnetii/pathogenicity , Female , Macrophages/cytology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Q Fever/metabolism , Q Fever/pathology , Tumor Necrosis Factor-alpha/metabolism
9.
Appl Environ Microbiol ; 82(10): 3042-51, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26969695

ABSTRACT

UNLABELLED: Host cell-free (axenic) culture of Coxiella burnetii in acidified citrate cysteine medium-2 (ACCM-2) has provided important opportunities for investigating the biology of this naturally obligate intracellular pathogen and enabled the development of tools for genetic manipulation. However, ACCM-2 has complex nutrient sources that preclude a detailed study of nutritional factors required for C. burnetii growth. Metabolic reconstruction of C. burnetii predicts that the bacterium cannot synthesize all amino acids and therefore must sequester some from the host. To examine C. burnetii amino acid auxotrophies, we developed a nutritionally defined medium with known amino acid concentrations, termed ACCM-D. Compared to ACCM-2, ACCM-D supported longer logarithmic growth, a more gradual transition to stationary phase, and approximately 5- to 10-fold greater overall replication. Small-cell-variant morphological forms generated in ACCM-D also showed increased viability relative to that generated in ACCM-2. Lack of growth in amino acid-deficient formulations of ACCM-D revealed C. burnetii auxotrophy for 11 amino acids, including arginine. Heterologous expression of Legionella pneumophila argGH in C. burnetii permitted growth in ACCM-D missing arginine and supplemented with citrulline, thereby providing a nonantibiotic means of selection of C. burnetii genetic transformants. Consistent with bioinformatic predictions, the elimination of glucose did not impair C. burnetii replication. Together, these results highlight the advantages of a nutritionally defined medium in investigations of C. burnetii metabolism and the development of genetic tools. IMPORTANCE: Host cell-free growth and genetic manipulation of Coxiella burnetii have revolutionized research of this intracellular bacterial pathogen. Nonetheless, undefined components of growth medium have made studies of C. burnetii physiology difficult and have precluded the development of selectable markers for genetic transformation based on nutritional deficiencies. Here, we describe a medium, containing only amino acids as the sole source of carbon and energy, which supports robust growth and improved viability of C. burnetii Growth studies confirmed that C. burnetii cannot replicate in medium lacking arginine. However, genetic transformation of the bacterium with constructs containing the last two genes in the L. pneumophila arginine biosynthesis pathway (argGH) allowed growth on defined medium missing arginine but supplemented with the arginine precursor citrulline. Our results advance the field by facilitating studies of C. burnetii metabolism and allowing non-antibiotic-based selection of C. burnetii genetic transformants, an important achievement considering that selectable makers based on antibiotic resistance are limited.


Subject(s)
Arginine/metabolism , Coxiella burnetii/genetics , Coxiella burnetii/metabolism , Genetic Complementation Test , Selection, Genetic , Transformation, Genetic , Coxiella burnetii/growth & development , Culture Media/chemistry , Gene Expression , Genetics, Microbial/methods , Legionella pneumophila/enzymology , Legionella pneumophila/genetics , Molecular Biology/methods
10.
Infect Immun ; 83(2): 661-70, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25422265

ABSTRACT

The intracellular bacterial pathogen Coxiella burnetii directs biogenesis of a parasitophorous vacuole (PV) that acquires host endolysosomal components. Formation of a PV that supports C. burnetii replication requires a Dot/Icm type 4B secretion system (T4BSS) that delivers bacterial effector proteins into the host cell cytosol. Thus, a subset of T4BSS effectors are presumed to direct PV biogenesis. Recently, the PV-localized effector protein CvpA was found to promote C. burnetii intracellular growth and PV expansion. We predict additional C. burnetii effectors localize to the PV membrane and regulate eukaryotic vesicle trafficking events that promote pathogen growth. To identify these vacuolar effector proteins, a list of predicted C. burnetii T4BSS substrates was compiled using bioinformatic criteria, such as the presence of eukaryote-like coiled-coil domains. Adenylate cyclase translocation assays revealed 13 proteins were secreted in a Dot/Icm-dependent fashion by C. burnetii during infection of human THP-1 macrophages. Four of the Dot/Icm substrates, termed Coxiella vacuolar protein B (CvpB), CvpC, CvpD, and CvpE, labeled the PV membrane and LAMP1-positive vesicles when ectopically expressed as fluorescently tagged fusion proteins. C. burnetii ΔcvpB, ΔcvpC, ΔcvpD, and ΔcvpE mutants exhibited significant defects in intracellular replication and PV formation. Genetic complementation of the ΔcvpD and ΔcvpE mutants rescued intracellular growth and PV generation, whereas the growth of C. burnetii ΔcvpB and ΔcvpC was rescued upon cohabitation with wild-type bacteria in a common PV. Collectively, these data indicate C. burnetii encodes multiple effector proteins that target the PV membrane and benefit pathogen replication in human macrophages.


Subject(s)
Bacterial Proteins/metabolism , Coxiella burnetii/metabolism , Macrophages/microbiology , Protein Transport/genetics , Vacuoles/metabolism , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Bacterial Secretion Systems/physiology , Cell Line, Tumor , Cell Membrane , Coxiella burnetii/genetics , Cytosol/metabolism , Gene Deletion , HeLa Cells , Host-Pathogen Interactions , Humans , Q Fever/microbiology , Q Fever/pathology , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Vacuoles/genetics , Vacuoles/microbiology
11.
PLoS Pathog ; 9(1): e1003107, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23358892

ABSTRACT

Reports implicating important roles for cholesterol and cholesterol-rich lipid rafts in host-pathogen interactions have largely employed sterol sequestering agents and biosynthesis inhibitors. Because the pleiotropic effects of these compounds can complicate experimental interpretation, we developed a new model system to investigate cholesterol requirements in pathogen infection utilizing DHCR24(-/-) mouse embryonic fibroblasts (MEFs). DHCR24(-/-) MEFs lack the Δ24 sterol reductase required for the final enzymatic step in cholesterol biosynthesis, and consequently accumulate desmosterol into cellular membranes. Defective lipid raft function by DHCR24(-/-) MEFs adapted to growth in cholesterol-free medium was confirmed by showing deficient uptake of cholera-toxin B and impaired signaling by epidermal growth factor. Infection in the absence of cholesterol was then investigated for three intracellular bacterial pathogens: Coxiella burnetii, Salmonella enterica serovar Typhimurium, and Chlamydia trachomatis. Invasion by S. Typhimurium and C. trachomatis was unaltered in DHCR24(-/-) MEFs. In contrast, C. burnetii entry was significantly decreased in -cholesterol MEFs, and also in +cholesterol MEFs when lipid raft-associated α(V)ß(3) integrin was blocked, suggesting a role for lipid rafts in C. burnetii uptake. Once internalized, all three pathogens established their respective vacuolar niches and replicated normally. However, the C. burnetii-occupied vacuole within DHCR24(-/-) MEFs lacked the CD63-positive material and multilamellar membranes typical of vacuoles formed in wild type cells, indicating cholesterol functions in trafficking of multivesicular bodies to the pathogen vacuole. These data demonstrate that cholesterol is not essential for invasion and intracellular replication by S. Typhimurium and C. trachomatis, but plays a role in C. burnetii-host cell interactions.


Subject(s)
Bacteria/pathogenicity , Bacterial Infections/metabolism , Cholesterol/deficiency , Host-Pathogen Interactions , Animals , Bacteria/growth & development , Bacterial Physiological Phenomena , Cells, Cultured , Cholesterol/metabolism , Colony Count, Microbial , Embryo, Mammalian/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/microbiology , Membrane Microdomains/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Species Specificity
12.
mBio ; 2(4): e00175-11, 2011.
Article in English | MEDLINE | ID: mdl-21862628

ABSTRACT

Central to Q fever pathogenesis is replication of the causative agent, Coxiella burnetii, within a phagolysosome-like parasitophorous vacuole (PV) in mononuclear phagocytes. C. burnetii modulates PV biogenesis and other host cell functions, such as apoptotic signaling, presumably via the activity of proteins delivered to the host cytosol by a Dot/Icm type IVB secretion system (T4BSS). In this study, we utilized a C. burnetii strain carrying IcmD inactivated by the Himar1 transposon to investigate the requirements for Dot/Icm function in C. burnetii parasitism of human THP-1 macrophage-like cells. The icmD::Tn mutant failed to secrete characterized T4BSS substrates, a defect that correlated with deficient replication, PV development, and apoptosis protection. Restoration of type IVB secretion and intracellular growth of the icmD::Tn mutant required complementation with icmD, -J, and -B, indicating a polar effect of the transposon insertion on downstream dot/icm genes. Induction of icmDJB expression at 1 day postinfection resulted in C. burnetii replication and PV generation. Collectively, these data prove that T4BSS function is required for productive infection of human macrophages by C. burnetii. However, illustrating the metabolic flexibility of C. burnetti, the icmD::Tn mutant could replicate intracellularly when sequestered in a PV generated by wild-type bacteria, where Dot/Icm function is provided in trans, and within a phenotypically similar PV generated by the protozoan parasite Leishmania amazonensis, where host cells are devoid of Dot/Icm T4BSS effector proteins.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems , Coxiella burnetii/metabolism , Macrophages/microbiology , Q Fever/microbiology , Animals , Bacterial Proteins/genetics , Cell Line , Coxiella burnetii/genetics , Coxiella burnetii/growth & development , Humans , Macrophages/metabolism , Protein Transport , Q Fever/metabolism , Vacuoles/metabolism , Vacuoles/microbiology
13.
Appl Environ Microbiol ; 77(11): 3720-5, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21478315

ABSTRACT

We recently described acidified citrate cysteine medium (ACCM), which supports host cell-free (axenic) growth of Coxiella burnetii. After 6 days of incubation, greater than 3 logs of growth was achieved with the avirulent Nine Mile phase II (NMII) strain. Here, we describe modified ACCM and culture conditions that support improved growth of C. burnetii and their use in genetic transformation and pathogen isolation from tissue samples. ACCM was modified by replacing fetal bovine serum with methyl-ß-cyclodextrin to generate ACCM-2. Cultivation of NMII in ACCM-2 with moderate shaking and in 2.5% oxygen yielded 4 to 5 logs of growth over 7 days. Similar growth was achieved with the virulent Nine Mile phase I and G isolates of C. burnetii. Colonies that developed after 6 days of growth in ACCM-2 agarose were approximately 0.5 mm in diameter, roughly 5-fold larger than those formed in ACCM agarose. By electron microscopy, colonies consisted primarily of the C. burnetii small cell variant morphological form. NMII was successfully cultured in ACCM-2 when medium was inoculated with as little as 10 genome equivalents contained in tissue homogenates from infected SCID mice. A completely axenic C. burnetii genetic transformation system was developed using ACCM-2 that allowed isolation of transformants in about 2 1/2 weeks. Transformation experiments demonstrated clonal populations in colonies and a transformation frequency of approximately 5 × 10(-5). Cultivation in ACCM-2 will accelerate development of C. burnetii genetic tools and provide a sensitive means of primary isolation of the pathogen from Q fever patients.


Subject(s)
Bacteriological Techniques/methods , Coxiella burnetii/genetics , Coxiella burnetii/isolation & purification , Culture Media/chemistry , Genetics, Microbial/methods , Transformation, Bacterial , Animals , Coxiella burnetii/growth & development , Coxiella burnetii/ultrastructure , Mice , Microscopy, Electron , Time Factors
14.
J Bacteriol ; 193(7): 1493-503, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21216993

ABSTRACT

The intracellular bacterial pathogen Coxiella burnetii directs biogenesis of a phagolysosome-like parasitophorous vacuole (PV), in which it replicates. The organism encodes a Dot/Icm type IV secretion system (T4SS) predicted to deliver to the host cytosol effector proteins that mediate PV formation and other cellular events. All C. burnetii isolates carry a large, autonomously replicating plasmid or have chromosomally integrated plasmid-like sequences (IPS), suggesting that plasmid and IPS genes are critical for infection. Bioinformatic analyses revealed two candidate Dot/Icm substrates with eukaryotic-like motifs uniquely encoded by the QpH1 plasmid from the Nine Mile reference isolate. CpeC, containing an F-box domain, and CpeD, possessing kinesin-related and coiled-coil regions, were secreted by the closely related Legionella pneumophila Dot/Icm T4SS. An additional QpH1-specific gene, cpeE, situated in a predicted operon with cpeD, also encoded a secreted effector. Further screening revealed that three hypothetical proteins (CpeA, CpeB, and CpeF) encoded by all C. burnetii plasmids and IPS are Dot/Icm substrates. By use of new genetic tools, secretion of plasmid effectors by C. burnetii during host cell infection was confirmed using ß-lactamase and adenylate cyclase translocation assays, and a C-terminal secretion signal was identified. When ectopically expressed in HeLa cells, plasmid effectors trafficked to different subcellular sites, including autophagosomes (CpeB), ubiquitin-rich compartments (CpeC), and the endoplasmic reticulum (CpeD). Collectively, these results suggest that C. burnetii plasmid-encoded T4SS substrates play important roles in subversion of host cell functions, providing a plausible explanation for the absolute maintenance of plasmid genes by this pathogen.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems/physiology , Coxiella burnetii/metabolism , Gene Expression Regulation, Bacterial/physiology , Plasmids/genetics , Bacterial Proteins/genetics , Bacterial Secretion Systems/genetics , Base Sequence , Cell Line , Coxiella burnetii/genetics , DNA, Bacterial/genetics , HeLa Cells , Humans , Protein Transport
15.
BMC Immunol ; 10: 26, 2009 May 08.
Article in English | MEDLINE | ID: mdl-19426498

ABSTRACT

BACKGROUND: The obligate intracellular bacterial pathogen Coxiella burnetii causes the zoonosis Q fever. The intracellular niche of C. burnetii has led to the assumption that cell-mediated immunity is the most important immune component for protection against this pathogen. However, passive immunization with immune serum can protect naïve animals from challenge with virulent C. burnetii, indicating a role for antibody (Ab) in protection. The mechanism of this Ab-mediated protection is unknown. Therefore, we conducted a study to determine whether Fc receptors (FcR) or complement contribute to Ab-mediated immunity (AMI) to C. burnetii. RESULTS: Virulent C. burnetii infects and replicates within human dendritic cells (DC) without inducing their maturation or activation. We investigated the effects of Ab opsonized C. burnetii on human monocyte-derived and murine bone marrow-derived DC. Infection of DC with Ab-opsonized C. burnetii resulted in increased expression of maturation markers and inflammatory cytokine production. Bacteria that had been incubated with naïve serum had minimal effect on DC, similar to virulent C. burnetii alone. The effect of Ab opsonized C. burnetii on DC was FcR dependent as evidenced by a reduced response of DC from FcR knockout (FcR k/o) compared to C57Bl/6 (B6) mice. To address the potential role of FcR in Ab-mediated protection in vivo, we compared the response of passively immunized FcR k/o mice to the B6 controls. Interestingly, we found that FcR are not essential for AMI to C. burnetii in vivo. We subsequently examined the role of complement in AMI by passively immunizing and challenging several different strains of complement-deficient mice and found that AMI to C. burnetii is also complement-independent. CONCLUSION: Despite our data showing FcR-dependent stimulation of DC in vitro, Ab-mediated immunity to C. burnetii in vivo is FcR-independent. We also found that passive immunity to this pathogen is independent of complement.


Subject(s)
Complement System Proteins/metabolism , Coxiella burnetii/immunology , Dendritic Cells/metabolism , Immunoglobulin G/metabolism , Receptors, Fc/metabolism , Animals , Antibody-Dependent Cell Cytotoxicity , Antigen-Antibody Complex/immunology , Antigen-Antibody Complex/metabolism , Antigens, Bacterial/immunology , Cell Differentiation/genetics , Cell Differentiation/immunology , Complement Activation/genetics , Complement Activation/immunology , Complement System Proteins/genetics , Dendritic Cells/immunology , Dendritic Cells/microbiology , Dendritic Cells/pathology , Immunization, Passive , Mice , Mice, Inbred C57BL , Mice, Knockout , Q Fever/immunology , Receptors, Fc/genetics
16.
Proc Natl Acad Sci U S A ; 106(11): 4430-4, 2009 Mar 17.
Article in English | MEDLINE | ID: mdl-19246385

ABSTRACT

The inability to propagate obligate intracellular pathogens under axenic (host cell-free) culture conditions imposes severe experimental constraints that have negatively impacted progress in understanding pathogen virulence and disease mechanisms. Coxiella burnetii, the causative agent of human Q (Query) fever, is an obligate intracellular bacterial pathogen that replicates exclusively in an acidified, lysosome-like vacuole. To define conditions that support C. burnetii growth, we systematically evaluated the organism's metabolic requirements using expression microarrays, genomic reconstruction, and metabolite typing. This led to development of a complex nutrient medium that supported substantial growth (approximately 3 log(10)) of C. burnetii in a 2.5% oxygen environment. Importantly, axenically grown C. burnetii were highly infectious for Vero cells and exhibited developmental forms characteristic of in vivo grown organisms. Axenic cultivation of C. burnetii will facilitate studies of the organism's pathogenesis and genetics and aid development of Q fever preventatives such as an effective subunit vaccine. Furthermore, the systematic approach used here may be broadly applicable to development of axenic media that support growth of other medically important obligate intracellular pathogens.


Subject(s)
Coxiella burnetii/growth & development , Q Fever/microbiology , Animals , Bacteriological Techniques , Cell-Free System , Chlorocebus aethiops , Coxiella burnetii/metabolism , Culture Media , Genomics , Metabolomics , Vero Cells
17.
J Bacteriol ; 191(5): 1369-81, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19114492

ABSTRACT

Coxiella burnetii is a gram-negative obligate intracellular bacterium and the causative agent of human Q fever. The lack of methods to genetically manipulate C. burnetii significantly impedes the study of this organism. We describe here the cloning and characterization of a C. burnetii ftsZ mutant generated by mariner-based Himar1 transposon (Tn) mutagenesis. C. burnetii was coelectroporated with a plasmid encoding the Himar1 C9 transposase variant and a plasmid containing a Himar1 transposon encoding chloramphenicol acetyltransferase, mCherry fluorescent protein, and a ColE1 origin of replication. Vero cells were infected with electroporated C. burnetii and transformants scored as organisms replicating in the presence of chloramphenicol and expressing mCherry. Southern blot analysis revealed multiple transpositions in the C. burnetii genome and rescue cloning identified 30 and 5 insertions in coding and noncoding regions, respectively. Using micromanipulation, a C. burnetii clone was isolated containing a Tn insertion within the C terminus of the cell division gene ftsZ. The ftsZ mutant had a significantly lower growth rate than wild-type bacteria and frequently appeared as filamentous forms displaying incomplete cell division septa. The latter phenotype correlated with a deficiency in generating infectious foci on a per-genome basis compared to wild-type organisms. The mutant FtsZ protein was also unable to bind the essential cell division protein FtsA. This is the first description of C. burnetii harboring a defined gene mutation generated by genetic transformation.


Subject(s)
Bacterial Proteins , Coxiella burnetii/genetics , Cytoskeletal Proteins , DNA Transposable Elements , Mutagenesis, Insertional/methods , Mutation , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chlorocebus aethiops , Cloning, Molecular , Coxiella burnetii/growth & development , Coxiella burnetii/pathogenicity , Coxiella burnetii/ultrastructure , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Electroporation , Humans , Microscopy, Electron, Scanning , Molecular Sequence Data , Plasmids/genetics , Transformation, Bacterial , Transposases/genetics , Transposases/metabolism , Vero Cells
18.
Clin Vaccine Immunol ; 15(12): 1771-9, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18845831

ABSTRACT

Q fever is a widespread zoonosis caused by Coxiella burnetii. Diagnosis of Q fever is usually based on serological testing of patient serum. The diagnostic antigen of test kits is formalin-fixed phase I and phase II organisms of the Nine Mile reference strain. Deficiencies of this antigen include (i) potential for cross-reactivity with other pathogens; (ii) an inability to distinguish between C. burnetii strains; and (iii) a need to propagate and purify C. burnetii, a difficult and potentially hazardous process. Consequently, there is a need for sensitive and specific serodiagnostic tests utilizing defined antigens, such as recombinant C. burnetii protein(s). Here we describe the use of a C. burnetii protein microarray to comprehensively identify immunodominant antigens recognized by antibody in the context of human C. burnetii infection or vaccination. Transcriptionally active PCR products corresponding to 1,988 C. burnetii open reading frames (ORFs) were generated. Full-length proteins were successfully synthesized from 75% of the ORFs by using an Escherichia coli-based in vitro transcription and translation system (IVTT). Nitrocellulose microarrays were spotted with crude IVTT lysates and probed with sera from acute Q fever patients and individuals vaccinated with Q-Vax. Immune sera strongly reacted with approximately 50 C. burnetii proteins, including previously identified immunogens, an ankyrin repeat-domain containing protein, and multiple hypothetical proteins. Recombinant protein corresponding to selected array-reactive antigens was generated, and the immunoreactivity was confirmed by enzyme-linked immunosorbent assay. This sensitive and high-throughput method for identifying immunoreactive C. burnetii proteins will aid in the development of Q fever serodiagnostic tests based on recombinant antigen.


Subject(s)
Antibodies, Bacterial/blood , Antigens, Bacterial/immunology , Antigens, Bacterial/isolation & purification , Coxiella burnetii/immunology , Proteome/immunology , Q Fever/diagnosis , Antigens, Bacterial/genetics , Cloning, Molecular , Coxiella burnetii/genetics , Enzyme-Linked Immunosorbent Assay , Humans , Protein Array Analysis , Q Fever/immunology , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sensitivity and Specificity , Serologic Tests
19.
J Bacteriol ; 190(9): 3203-12, 2008 May.
Article in English | MEDLINE | ID: mdl-18310349

ABSTRACT

Growth of Coxiella burnetii, the agent of Q fever, is strictly limited to colonization of a viable eukaryotic host cell. Following infection, the pathogen replicates exclusively in an acidified (pH 4.5 to 5) phagolysosome-like parasitophorous vacuole. Axenic (host cell free) buffers have been described that activate C. burnetii metabolism in vitro, but metabolism is short-lived, with bacterial protein synthesis halting after a few hours. Here, we describe a complex axenic medium that supports sustained (>24 h) C. burnetii metabolic activity. As an initial step in medium development, several biological buffers (pH 4.5) were screened for C. burnetii metabolic permissiveness. Based on [(35)S]Cys-Met incorporation, C. burnetii displayed optimal metabolic activity in citrate buffer. To compensate for C. burnetii auxotrophies and other potential metabolic deficiencies, we developed a citrate buffer-based medium termed complex Coxiella medium (CCM) that contains a mixture of three complex nutrient sources (neopeptone, fetal bovine serum, and RPMI cell culture medium). Optimal C. burnetii metabolism occurred in CCM with a high chloride concentration (140 mM) while the concentrations of sodium and potassium had little effect on metabolism. CCM supported prolonged de novo protein and ATP synthesis by C. burnetii (>24 h). Moreover, C. burnetii morphological differentiation was induced in CCM as determined by the transition from small-cell variant to large-cell variant. The sustained in vitro metabolic activity of C. burnetii in CCM provides an important tool to investigate the physiology of this organism including developmental transitions and responses to antimicrobial factors associated with the host cell.


Subject(s)
Coxiella burnetii/drug effects , Coxiella burnetii/metabolism , Culture Media/pharmacology , Adenosine Triphosphate/biosynthesis , Buffers , Carbon/analysis , Cell Culture Techniques , Coxiella burnetii/growth & development , Culture Media/chemistry , Hydrogen-Ion Concentration , Protein Biosynthesis/drug effects
20.
J Microbiol Methods ; 72(3): 321-5, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18242746

ABSTRACT

Purification of the obligate intracellular bacterium Coxiella burnetii requires physical disruption of infected cells. Here we describe a gentle and safe digitonin lysis procedure to release C. burnetii from infected cells. The purity, yield, and infectivity of digitonin-prepped organisms are comparable to that of organisms purified using cell lysis by sonication.


Subject(s)
Bacteriological Techniques/methods , Coxiella burnetii/isolation & purification , Digitonin/metabolism , Animals , Cell Membrane/drug effects , Chlorocebus aethiops , Coxiella burnetii/cytology , Coxiella burnetii/ultrastructure , Microscopy , Microscopy, Electron, Transmission , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...