Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0298657, 2024.
Article in English | MEDLINE | ID: mdl-38713725

ABSTRACT

Zebrafish are an established and widely used animal model, yet there is limited understanding of their welfare needs. Despite an increasing number of studies on zebrafish enrichment, in-tank environmental enrichment remains unpopular among researchers. This is due to perceived concerns over health/hygiene when it comes to introducing enrichment into the tank, although actual evidence for this is sparse. To accommodate this belief, regardless of veracity, we tested the potential benefits of enrichments presented outside the tank. Thus, we investigated the preferences and physiological stress of zebrafish with pictures of pebbles placed underneath the tank. We hypothesized that zebrafish would show a preference for enriched environments and have lower stress levels than barren housed zebrafish. In our first experiment, we housed zebrafish in a standard rack system and recorded their preference for visual access to a pebble picture, with two positive controls: visual access to conspecifics, and group housing. Using a crossover repeated-measures factorial design, we tested if the preference for visual access to pebbles was as strong as the preference for social contact. Zebrafish showed a strong preference for visual access to pebbles, equivalent to that for conspecifics. Then, in a second experiment, tank water cortisol was measured to assess chronic stress levels of zebrafish housed with or without a pebble picture under their tank, with group housing as a positive control. Cortisol levels were significantly reduced in zebrafish housed with pebble pictures, as were cortisol levels in group housed zebrafish. In fact, single housed zebrafish with pebble pictures showed the same cortisol levels as group housed zebrafish without pebble pictures. Thus, the use of an under-tank pebble picture was as beneficial as being group housed, effectively compensating for the stress of single housing. Pebble picture enrichment had an additive effect with group housing, where group housed zebrafish with pebble pictures had the lowest cortisol levels of any treatment group.


Subject(s)
Housing, Animal , Hydrocortisone , Zebrafish , Animals , Zebrafish/physiology , Hydrocortisone/metabolism , Stress, Physiological , Male , Behavior, Animal/physiology , Female , Animal Welfare
2.
Biol Psychiatry ; 87(11): 967-978, 2020 06 01.
Article in English | MEDLINE | ID: mdl-31937415

ABSTRACT

BACKGROUND: A clinical hallmark of alcohol use disorder is persistent drinking despite potential adverse consequences. The ventromedial prefrontal cortex (vmPFC) and dorsomedial prefrontal cortex (dmPFC) are positioned to exert top-down control over subcortical regions, such as the nucleus accumbens shell (NAcS) and basolateral amygdala, which encode positive and negative valence of ethanol (EtOH)-related stimuli. Prior rodent studies have implicated these regions in regulation of punished EtOH self-administration (EtOH-SA). METHODS: We conducted in vivo electrophysiological recordings in mouse vmPFC and dmPFC to obtain neuronal correlates of footshock-punished EtOH-SA. Ex vivo recordings were performed in NAcS D1 receptor-expressing medium spiny neurons receiving vmPFC input to examine punishment-related plasticity in this pathway. Optogenetic photosilencing was employed to assess the functional contribution of the vmPFC, dmPFC, vmPFC projections to NAcS, or vmPFC projections to basolateral amygdala, to punished EtOH-SA. RESULTS: Punishment reduced EtOH lever pressing and elicited aborted presses (lever approach followed by rapid retraction). Neurons in the vmPFC and dmPFC exhibited phasic firing to EtOH lever presses and aborts, but only in the vmPFC was there a population-level shift in coding from lever presses to aborts with punishment. Closed-loop vmPFC, but not dmPFC, photosilencing on a postpunishment probe test negated the reduction in EtOH lever presses but not in aborts. Punishment was associated with altered plasticity at vmPFC inputs to D1 receptor-expressing medium spiny neurons in the NAcS. Photosilencing vmPFC projections to the NAcS, but not to the basolateral amygdala, partially reversed suppression of EtOH lever presses on probe testing. CONCLUSIONS: These findings demonstrate a key role for the vmPFC in regulating EtOH-SA after punishment, with implications for understanding the neural basis of compulsive drinking in alcohol use disorder.


Subject(s)
Ethanol , Nucleus Accumbens , Animals , Mice , Prefrontal Cortex , Punishment , Self Administration
SELECTION OF CITATIONS
SEARCH DETAIL
...