Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
J Appl Clin Med Phys ; 22(6): 4-10, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33938120

ABSTRACT

The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines: (a) Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. (b) Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.


Subject(s)
Health Physics , Radiation Oncology , Cytarabine , Humans , Societies , Tomography, X-Ray Computed , United States
2.
Med Phys ; 47(8): 3752-3771, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32453879

ABSTRACT

Computed tomography (CT) technology has rapidly evolved since its introduction in the 1970s. It is a highly important diagnostic tool for clinicians as demonstrated by the significant increase in utilization over several decades. However, much of the effort to develop and advance CT applications has been focused on improving visual sensitivity and reducing radiation dose. In comparison to these areas, improvements in quantitative CT have lagged behind. While this could be a consequence of the technological limitations of conventional CT, advanced dual-energy CT (DECT) and photon-counting detector CT (PCD-CT) offer new opportunities for quantitation. Routine use of DECT is becoming more widely available and PCD-CT is rapidly developing. This review covers efforts to address an unmet need for improved quantitative imaging to better characterize disease, identify biomarkers, and evaluate therapeutic response, with an emphasis on multi-energy CT applications. The review will primarily discuss applications that have utilized quantitative metrics using both conventional and DECT, such as bone mineral density measurement, evaluation of renal lesions, and diagnosis of fatty liver disease. Other topics that will be discussed include efforts to improve quantitative CT volumetry and radiomics. Finally, we will address the use of quantitative CT to enhance image-guided techniques for surgery, radiotherapy and interventions and provide unique opportunities for development of new contrast agents.


Subject(s)
Photons , Tomography, X-Ray Computed , Tomography
3.
Radiology ; 292(2): 414-419, 2019 08.
Article in English | MEDLINE | ID: mdl-31237496

ABSTRACT

Background Assessments of the quantitative limitations among the six commercially available dual-energy (DE) CT acquisition schemes used by major CT manufacturers could aid researchers looking to use iodine quantification as an imaging biomarker. Purpose To determine the limits of detection and quantification of DE CT in phantoms by comparing rapid peak kilovoltage switching, dual-source, split-filter, and dual-layer detector systems in six different scanners. Materials and Methods Seven 50-mL iohexol solutions were used, with concentrations of 0.03-2.0 mg iodine per milliliter. The solutions and water sample were scanned five times each in two phantoms (small, 20-cm diameter; large, 30 × 40-cm diameter) with six DE CT systems and a total of 10 peak kilovoltage settings or combinations. Iodine maps were created, and the mean iodine signal in each sample was recorded. The limit of blank (LOB) was defined as the upper limit of the 95% confidence interval of the water sample. The limit of detection (LOD) was defined as the concentration with a 95% chance of having a signal above the LOB. The limit of quantification (LOQ) was defined as the lowest concentration where the coefficient of variation was less than 20%. Results The LOD range was 0.021-0.26 mg/mL in the small phantom and 0.026-0.55 mg/mL in the large phantom. The LOQ range was 0.07-0.50 mg/mL in the small phantom and 0.20-1.0 mg/mL in the large phantom. The dual-source and rapid peak kilovoltage switching systems had the lowest LODs, and the dual-layer detector systems had the highest LODs. Conclusion The iodine limit of detection using dual-energy CT systems varied with scanner and phantom size, but all systems depicted iodine in the small and large phantoms at or below 0.3 and 0.5 mg/mL, respectively, and enabled quantification at concentrations of 0.5 and 1.0 mg/mL, respectively. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Hindman in this issue.


Subject(s)
Contrast Media , Iodine , Radiographic Image Enhancement/methods , Radiography, Dual-Energy Scanned Projection/methods , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Reproducibility of Results
4.
NPJ Microgravity ; 5: 6, 2019.
Article in English | MEDLINE | ID: mdl-30886891

ABSTRACT

Concerns raised at a 2010 Bone Summit held for National Aeronautics and Space Administration Johnson Space Center led experts in finite element (FE) modeling for hip fracture prediction to propose including hip load capacity in the standards for astronaut skeletal health. The current standards for bone are based upon areal bone mineral density (aBMD) measurements by dual X-ray absorptiometry (DXA) and an adaptation of aBMD cut-points for fragility fractures. Task Group members recommended (i) a minimum permissible outcome limit (POL) for post-mission hip bone load capacity, (ii) use of FE hip load capacity to further screen applicants to astronaut corps, (iii) a minimum pre-flight standard for a second long-duration mission, and (iv) a method for assessing which post-mission physical activities might increase an astronaut's risk for fracture after return. QCT-FE models of eight astronaut were analyzed using nonlinear single-limb stance (NLS) and posterolateral fall (NLF) loading configurations. QCT data from the Age Gene/Environment Susceptibility (AGES) Reykjavik cohort and the Rochester Epidemiology Project were analyzed using identical modeling procedures. The 75th percentile of NLS hip load capacity for fractured elderly males of the AGES cohort (9537N) was selected as a post-mission POL. The NLF model, in combination with a Probabilistic Risk Assessment tool, was used to assess the likelihood of exceeding the hip load capacity during post-flight activities. There was no recommendation to replace the current DXA-based standards. However, FE estimation of hip load capacity appeared more meaningful for younger, physically active astronauts and was recommended to supplement aBMD cut-points.

5.
J Am Coll Radiol ; 16(2): 236-239, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30245216

ABSTRACT

The ACR Dose Index Registry (DIR) provides a new source of clinical radiation exposure data that has not been used previously to establish or update the relative radiation level (RRL) values in the ACR Appropriateness Criteria (AC). The results of a recent review of DIR data for 10 common CT examinations were compared with current ACR AC RRL values for the same procedures. The AC RRL values were previously determined by consensus of members of the AC Radiation Exposure Subcommittee based on reference radiation dose values from the literature (when available) and anecdotal information from individual members' clinical practices and experiences. For 7 of the 10 examination types reviewed, DIR data agreed with existing RRL values. For 3 of 10 examination types, DIR data reflected lower dose values than currently rated in the AC. The Radiation Exposure Subcommittee will revise these RRL assignments in a forthcoming update to the AC (in October 2018) and will continue to monitor the DIR and associated reviews and analyses to refine RRL assignments for additional examination types. Given recent attention and efforts to reduce radiation exposure in CT and other imaging modalities, it is likely that other examination types will require revision of RRL assignments once information from the DIR database is considered.


Subject(s)
Diagnostic Imaging/standards , Radiation Monitoring/standards , Registries , Societies, Medical , Adult , Humans , Radiation Dosage , Radiation Exposure/standards , United States
6.
Med Phys ; 45(4): 1444-1458, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29446082

ABSTRACT

PURPOSE: A prototype QC phantom system and analysis process were developed to characterize the spectral capabilities of a fast kV-switching dual-energy computed tomography (DECT) scanner. This work addresses the current lack of quantitative oversight for this technology, with the goal of identifying relevant scan parameters and test metrics instrumental to the development of a dual-energy quality control (DEQC). METHODS: A prototype elliptical phantom (effective diameter: 35 cm) was designed with multiple material inserts for DECT imaging. Inserts included tissue equivalent and material rods (including iodine and calcium at varying concentrations). The phantom was scanned on a fast kV-switching DECT system using 16 dual-energy acquisitions (CTDIvol range: 10.3-62 mGy) with varying pitch, rotation time, and tube current. The circular head phantom (22 cm diameter) was scanned using a similar protocol (12 acquisitions; CTDIvol range: 36.7-132.6 mGy). All acquisitions were reconstructed at 50, 70, 110, and 140 keV and using a water-iodine material basis pair. The images were evaluated for iodine quantification accuracy, stability of monoenergetic reconstruction CT number, noise, and positional constancy. Variance component analysis was used to identify technique parameters that drove deviations in test metrics. Variances were compared to thresholds derived from manufacturer tolerances to determine technique parameters that had a nominally significant effect on test metrics. RESULTS: Iodine quantification error was largely unaffected by any of the technique parameters investigated. Monoenergetic HU stability was found to be affected by mAs, with a threshold under which spectral separation was unsuccessful, diminishing the utility of DECT imaging. Noise was found to be affected by CTDIvol in the DEQC body phantom, and CTDIvol and mA in the DEQC head phantom. Positional constancy was found to be affected by mAs in the DEQC body phantom and mA in the DEQC head phantom. CONCLUSION: A streamlined scan protocol was developed to further investigate the effects of CTDIvol and rotation time while limiting data collection to the DEQC body phantom. Further data collection will be pursued to determine baseline values and statistically based failure thresholds for the validation of long-term DECT scanner performance.


Subject(s)
Tomography, X-Ray Computed/instrumentation , Phantoms, Imaging , Quality Control , Signal-To-Noise Ratio , Time Factors
7.
Radiology ; 287(1): 224-234, 2018 04.
Article in English | MEDLINE | ID: mdl-29185902

ABSTRACT

Purpose To determine the accuracy of dual-energy computed tomographic (CT) quantitation in a phantom system comparing fast kilovolt peak-switching, dual-source, split-filter, sequential-scanning, and dual-layer detector systems. Materials and Methods A large elliptical phantom containing iodine (2, 5, and 15 mg/mL), simulated contrast material-enhanced blood, and soft-tissue inserts with known elemental compositions was scanned three to five times with seven dual-energy CT systems and a total of 10 kilovolt peak settings. Monochromatic images (50, 70, and 140 keV) and iodine concentration images were created. Mean iodine concentration and monochromatic attenuation for each insert and reconstruction energy level were recorded. Measurement bias was assessed by using the sum of the mean signed errors measured across relevant inserts for each monochromatic energy level and iodine concentration. Iodine and monochromatic errors were assessed by using the root sum of the squared error of all measurements. Results At least one acquisition paradigm per scanner had iodine biases (range, -2.6 to 1.5 mg/mL) with significant differences from zero. There were no significant differences in iodine error (range, 0.44-1.70 mg/mL) among the top five acquisition paradigms (one fast kilovolt peak switching, three dual source, and one sequential scanning). Monochromatic bias was smallest for 70 keV (-12.7 to 15.8 HU) and largest for 50 keV (-80.6 to 35.2 HU). There were no significant differences in monochromatic error (range, 11.4-52.0 HU) among the top three acquisition paradigms (one dual source and two fast kilovolt peak switching). The lowest accuracy for both measures was with a split-filter system. Conclusion Iodine and monochromatic accuracy varies among systems, but dual-source and fast kilovolt-switching generally provided the most accurate results in a large phantom. © RSNA, 2017 Online supplemental material is available for this article.


Subject(s)
Iodine , Phantoms, Imaging , Radiographic Image Enhancement/methods , Radiographic Image Interpretation, Computer-Assisted , Radiography, Dual-Energy Scanned Projection/methods , Tomography, X-Ray Computed/methods , Reproducibility of Results
8.
AJR Am J Roentgenol ; 208(5): 1082-1088, 2017 May.
Article in English | MEDLINE | ID: mdl-28267354

ABSTRACT

OBJECTIVE: We calculated body size-specific organ and effective doses for 23,734 participants in the National Lung Screening Trial (NLST) using a CT dose calculator. MATERIALS AND METHODS: We collected participant-specific technical parameters of 23,734 participants who underwent CT in the clinical trial. For each participant, we calculated two sets of organ doses using two methods. First, we computed body size-specific organ and effective doses using the National Cancer Institute CT (NCICT) dosimetry program, which is based on dose coefficients derived from a library of body size-dependent adult male and female computational phantoms. We then recalculated organ and effective doses using dose coefficients from reference size phantoms for all examinations to investigate potential errors caused by the lack of body size consideration in the dose calculations. RESULTS: The underweight participants (body mass index [BMI; weight in kilograms divided by the square of height in meters] < 18.5) received 1.3-fold greater lung dose (median, 4.93 mGy) than the obese participants (BMI > 30) (3.90 mGy). Thyroid doses were approximately 1.3- to 1.6-fold greater than the lung doses (6.3-6.5 mGy). The reference phantom-based dose calculation underestimates the body size-specific lung dose by up to 50% for the underweight participants and overestimates that value by up to 200% for the overweight participants. The median effective dose ranges from 2.01 mSv in obese participants to 2.80 mSv in underweight participants. CONCLUSION: Body size-specific organ and effective doses were computed for 23,734 NLST participants who underwent low-dose CT screening. The use of reference size phantoms can lead to significant errors in organ dose estimates when body size is not considered in the dose assessment.


Subject(s)
Body Size , Lung Neoplasms/diagnostic imaging , Mass Screening , Radiography, Thoracic/methods , Tomography, X-Ray Computed/methods , Aged , Female , Humans , Lung Neoplasms/epidemiology , Male , Middle Aged , Organ Size , Phantoms, Imaging , Radiation Dosage , Smoking/epidemiology , United States/epidemiology
9.
Abdom Radiol (NY) ; 42(3): 688-701, 2017 03.
Article in English | MEDLINE | ID: mdl-28070657

ABSTRACT

Dual-energy CT imaging has many potential uses in abdominal imaging. It also has unique requirements for protocol creation depending on the dual-energy scanning technique that is being utilized. It also generates several new types of images which can increase the complexity of image creation and image interpretation. The purpose of this article is to review, for rapid switching and dual-source dual-energy platforms, methods for creating dual-energy protocols, different approaches for efficiently creating dual-energy images, and an approach to navigating and using dual-energy images at the reading station all using the example of a pancreatic multiphasic protocol. It will also review the three most commonly used types of dual-energy images: "workhorse" 120kVp surrogate images (including blended polychromatic and 70 keV monochromatic), high contrast images (e.g., low energy monochromatic and iodine material decomposition images), and virtual unenhanced images. Recent developments, such as the ability to create automatically on the scanner the most common dual-energy images types, namely new "Mono+" images for the DSDECT (dual-source dual-energy CT) platform will also be addressed. Finally, an approach to image interpretation using automated "hanging protocols" will also be covered. Successful dual-energy implementation in a high volume practice requires careful attention to each of these steps of scanning, image creation, and image interpretation.


Subject(s)
Radiography, Abdominal/methods , Radiography, Dual-Energy Scanned Projection/methods , Tomography, X-Ray Computed/methods , Clinical Protocols , Humans
10.
Invest Radiol ; 52(1): 30-41, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27379697

ABSTRACT

OBJECTIVE: The aim of this study was to develop a diagnostic framework for distinguishing calcific from hemorrhagic cerebral lesions using dual-energy computed tomography (DECT) in an anthropomorphic phantom system. MATERIALS AND METHODS: An anthropomorphic phantom was designed to mimic the CT imaging characteristics of the human head. Cylindrical lesion models containing either calcium or iron, mimicking calcification or hemorrhage, respectively, were developed to exhibit matching, and therefore indistinguishable, single-energy CT (SECT) attenuation values from 40 to 100 HU. These lesion models were fabricated at 0.5, 1, and 1.5 cm in diameter and positioned in simulated cerebrum and skull base locations within the anthropomorphic phantom. All lesion sizes were modeled in the cerebrum, while only 1.5-cm lesions were modeled in the skull base. Images were acquired using a GE 750HD CT scanner and an expansive dual-energy protocol that covered variations in dose (36.7-132.6 mGy CTDIvol, n = 12), image thickness (0.625-5 mm, n = 4), and reconstruction filter (soft, standard, detail, n = 3) for a total of 144 unique technique combinations. Images representing each technique combination were reconstructed into water and calcium material density images, as well as a monoenergetic image chosen to mimic the attenuation of a 120-kVp SECT scan. A true single-energy routine brain protocol was also included for verification of lesion SECT attenuation. Points representing the 3 dual-energy reconstructions were plotted into a 3-dimensional space (water [milligram/milliliter], calcium [milligram/milliliter], monoenergetic Hounsfield unit as x, y, and z axes, respectively), and the distribution of points analyzed using 2 approaches: support vector machines and a simple geometric bisector (GB). Each analysis yielded a plane of optimal differentiation between the calcification and hemorrhage lesion model distributions. By comparing the predicted lesion composition to the known lesion composition, we identified the optimal combination of CTDIvol, image thickness, and reconstruction filter to maximize differentiation between the lesion model types. To validate these results, a new set of hemorrhage and calcification lesion models were created, scanned in a blinded fashion, and prospectively classified using the planes of differentiation derived from support vector machine and GB methods. RESULTS: Accuracy of differentiation improved with increasing dose (CTDIvol) and image thickness. Reconstruction filter had no effect on the accuracy of differentiation. Using an optimized protocol consisting of the maximum CTDIvol of 132.6 mGy, 5-mm-thick images, and a standard filter, hemorrhagic and calcific lesion models with equal SECT attenuation (Hounsfield unit) were differentiated with over 90% accuracy down to 70 HU for skull base lesions of 1.5 cm, and down to 100 HU, 60 HU, and 60 HU for cerebrum lesions of 0.5, 1.0, and 1.5 cm, respectively. The analytic method that yielded the best results was a simple GB plane through the 3-dimensional DECT space. In the validation study, 96% of unknown lesions were correctly classified across all lesion sizes and locations investigated. CONCLUSIONS: We define the optimal scan parameters and expected limitations for the accurate classification of hemorrhagic versus calcific cerebral lesions in an anthropomorphic phantom with DECT. Although our proposed DECT protocol represents an increase in dose compared with routine brain CT, this method is intended as a specialized evaluation of potential brain hemorrhage and is thus counterbalanced by increased diagnostic benefit. This work provides justification for the application of this technique in human clinical trials.


Subject(s)
Calcinosis/diagnostic imaging , Intracranial Hemorrhages/diagnostic imaging , Radiography, Dual-Energy Scanned Projection/instrumentation , Tomography, X-Ray Computed/instrumentation , Calcinosis/metabolism , Calcinosis/pathology , Humans , Image Processing, Computer-Assisted/instrumentation , Image Processing, Computer-Assisted/methods , Intracranial Hemorrhages/metabolism , Intracranial Hemorrhages/pathology , Phantoms, Imaging , Radiography, Dual-Energy Scanned Projection/methods , Support Vector Machine , Tomography, X-Ray Computed/methods
11.
Phys Med Biol ; 61(20): 7363-7376, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27694696

ABSTRACT

Rise, fall, and stabilization of the x-ray tube output occur immediately before and after data acquisition on some computed tomography (CT) scanners and are believed to contribute additional dose to anatomy facing the x-ray tube when it powers on or off. In this study, we characterized the dose penalty caused by additional radiation exposure during the rise, stabilization, and/or fall time (referred to as overscanning). A 32 cm CT dose-index (CTDI) phantom was scanned on three CT scanners: GE Healthcare LightSpeed VCT, GE Healthcare Discovery CT750 HD, and Siemens Somatom Definition Flash. Radiation exposure was detected for various x-ray tube start acquisition angles using a 10 cm pencil ionization chamber placed in the peripheral chamber hole at the phantom's 12 o'clock position. Scan rotation time, ionization chamber location, phantom diameter, and phantom centering were varied to quantify their effects on the dose penalty caused by overscanning. For 1 s single, axial rotations, CTDI at the 12 o'clock chamber position (CTDI100, 12:00) was 6.1%, 4.0%, and 4.4% higher when the start angle of the x-ray tube was aligned at the top of the gantry (12 o'clock) versus when the start angle was aligned at 9 o'clock for the Siemens Flash, GE CT750 HD, and GE VCT scanner, respectively. For the scanners' fastest rotation times (0.285 s for the Siemens and 0.4 s for both GE scanners), the dose penalties increased to 22.3%, 10.7%, and 10.5%, respectively, suggesting a trade-off between rotation speed and the dose penalty from overscanning. In general, overscanning was shown to have a greater radiation dose impact for larger diameter phantoms, shorter rotation times, and to peripheral phantom locations. Future research is necessary to determine an appropriate method for incorporating the localized dose penalty from overscanning into standard dose metrics, as well as to assess the impact on organ dose.


Subject(s)
Phantoms, Imaging , Radiation Dosage , Tomography, X-Ray Computed/instrumentation , Algorithms , Humans , Image Processing, Computer-Assisted , Tomography Scanners, X-Ray Computed
12.
J Appl Clin Med Phys ; 17(2): 511-531, 2016 03 08.
Article in English | MEDLINE | ID: mdl-27074454

ABSTRACT

The purpose of this study was to characterize image quality and dose performance with GE CT iterative reconstruction techniques, adaptive statistical iterative recontruction (ASiR), and model-based iterative reconstruction (MBIR), over a range of typical to low-dose intervals using the Catphan 600 and the anthropomorphic Kyoto Kagaku abdomen phantoms. The scope of the project was to quantitatively describe the advantages and limitations of these approaches. The Catphan 600 phantom, supplemented with a fat-equivalent oval ring, was scanned using a GE Discovery HD750 scanner at 120 kVp, 0.8 s rotation time, and pitch factors of 0.516, 0.984, and 1.375. The mA was selected for each pitch factor to achieve CTDIvol values of 24, 18, 12, 6, 3, 2, and 1 mGy. Images were reconstructed at 2.5 mm thickness with filtered back-projection (FBP); 20%, 40%, and 70% ASiR; and MBIR. The potential for dose reduction and low-contrast detectability were evaluated from noise and contrast-to-noise ratio (CNR) measurements in the CTP 404 module of the Catphan. Hounsfield units (HUs) of several materials were evaluated from the cylinder inserts in the CTP 404 module, and the modulation transfer function (MTF) was calculated from the air insert. The results were con-firmed in the anthropomorphic Kyoto Kagaku abdomen phantom at 6, 3, 2, and 1mGy. MBIR reduced noise levels five-fold and increased CNR by a factor of five compared to FBP below 6mGy CTDIvol, resulting in a substantial improvement in image quality. Compared to ASiR and FBP, HU in images reconstructed with MBIR were consistently lower, and this discrepancy was reversed by higher pitch factors in some materials. MBIR improved the conspicuity of the high-contrast spatial resolution bar pattern, and MTF quantification confirmed the superior spatial resolution performance of MBIR versus FBP and ASiR at higher dose levels. While ASiR and FBP were relatively insensitive to changes in dose and pitch, the spatial resolution for MBIR improved with increasing dose and pitch. Unlike FBP, MBIR and ASiR may have the potential for patient imaging at around 1 mGy CTDIvol. The improved low-contrast detectability observed with MBIR, especially at low-dose levels, indicate the potential for considerable dose reduction.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Neoplasms/radiotherapy , Phantoms, Imaging , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted/methods , Humans , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Tomography, X-Ray Computed
13.
Med Phys ; 42(2): 1080-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25652520

ABSTRACT

PURPOSE: The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. METHODS: MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for all exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. RESULTS: The calculated mean percent difference between TLD measurements and Monte Carlo simulations was -4.9% with standard deviation of 8.7% and a range of -22.7% to 5.7%. CONCLUSIONS: The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.


Subject(s)
Monte Carlo Method , Multidetector Computed Tomography , Humans , Phantoms, Imaging , Radiation Dosage , Radiometry , Reproducibility of Results
14.
Invest Radiol ; 50(1): 9-16, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25162534

ABSTRACT

OBJECTIVES: Calcific and hemorrhagic intracranial lesions with attenuation levels of less than 100 Hounsfield units (HUs) cannot currently be reliably differentiated by single-energy computed tomography (SECT). The proper differentiation of these lesion types would have a multitude of clinical applications. A phantom model was used to test the ability of dual-energy CT (DECT) to differentiate such lesions. MATERIALS AND METHODS: Agar gel-bound ferric oxide and hydroxyapatite were used to model hemorrhage and calcification, respectively. Gel models were scanned using SECT and DECT and organized into SECT attenuation-matched pairs at 16 attenuation levels between 0 and 100 HU. Dual-energy CT data were analyzed using 3-dimensional (3D) Gaussian mixture models (GMMs), as well as a simplified threshold plane metric derived from the 3D GMM, to assign voxels to hemorrhagic or calcific categories. Accuracy was calculated by comparing predicted voxel assignments with actual voxel identities. RESULTS: We measured 6032 voxels from each gel model, for a total of 193,024 data points (16 matched model pairs). Both the 3D GMM and its more clinically implementable threshold plane derivative yielded similar results, with higher than 90% accuracy at matched SECT attenuation levels of 50 HU and greater. CONCLUSIONS: Hemorrhagic and calcific lesions with attenuation levels between 50 and 100 HU were differentiable using DECT in a clinically relevant phantom system with higher than 90% accuracy. This method warrants further testing for potential clinical applications.


Subject(s)
Calcinosis/diagnostic imaging , Intracranial Hemorrhages/diagnostic imaging , Radiography, Dual-Energy Scanned Projection/methods , Tomography, X-Ray Computed/methods , Diagnosis, Differential , Humans , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Phantoms, Imaging , Reproducibility of Results
15.
Pediatr Radiol ; 44 Suppl 3: 427-30, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25304700

ABSTRACT

Automatic exposure control (AEC) is particularly well-suited for pediatric CT scanning. However the importance of the localizer scan portion of exams that relies on AEC is frequently underestimated. This paper explains in detail several crucial aspects of the localizer and their effect on the subsequent cross-sectional (axial or helical) image acquisition. The paper also covers general suggestions regarding AEC influence on the cross-sectional images. AEC systems on CT scanners are becoming more complex; using them effectively in the setting of pediatric CT requires careful selection of scan parameters.


Subject(s)
Image Enhancement/instrumentation , Patient Positioning/instrumentation , Pediatrics/instrumentation , Radiation Dosage , Radiation Protection/instrumentation , Radiometry/instrumentation , Tomography, X-Ray Computed/instrumentation , Child , Equipment Design , Equipment Failure Analysis , Humans , Image Enhancement/methods , Patient Positioning/methods , Pediatrics/methods , Radiation Protection/methods , Radiometry/methods , Tomography, X-Ray Computed/methods
16.
Pediatr Radiol ; 44 Suppl 3: 489-91, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25304708

ABSTRACT

When determining a strategy for pediatric CT scanning, clinical staff can either elect to adjust routine adult-protocol parameter settings on a case-by-case basis or rely on pre-set pediatric protocol parameters. The advantages of the latter approach are the topic of this manuscript. This paper outlines specific options to consider, including the need for regular protocol review.


Subject(s)
Patient-Centered Care/standards , Practice Guidelines as Topic , Radiation Dosage , Radiology/standards , Radiometry/standards , Tomography, X-Ray Computed/instrumentation , Tomography, X-Ray Computed/standards , Algorithms , Child , Equipment Failure Analysis/instrumentation , Equipment Failure Analysis/standards , Guideline Adherence , Humans , Pediatrics/standards , Radiometry/instrumentation , Reference Values , United States
17.
J Am Coll Radiol ; 11(3): 262-6, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24589401

ABSTRACT

With growing concern over radiation exposure from CT, dose reduction and optimization have become important considerations. Many protocol factors and CT technologies influence this dose reduction effort, and as such, users should maintain a working knowledge of developments in the field. Individual patient factors and scanner-specific details also require care and expertise, which are vital to the success of any dose reduction effort. The authors review the content of the Virtual Symposium on Radiation Safety in Computed Tomography (University of California Dose Optimization and Standardization Endeavor), specifically that pertaining to the more practical aspects of dose optimization. These range from prescan tips to postscan factors, as well as protocol definition itself. Topics discussed include localizer radiograph acquisition, tube current modulation, reconstruction methods, and pediatric considerations, with the content biased toward a CT technologist or protocol manager. Near-term innovations, including new iterative reconstruction methods, tube potential modulation, and dual-energy CT, are presented, and their capability for dose reduction is briefly discussed.


Subject(s)
Forecasting , Radiation Dosage , Radiation Protection/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/trends , Adult Children , Humans , United States
18.
J Am Coll Radiol ; 11(3): 267-70, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24589402

ABSTRACT

To reduce the radiation dose associated with CT scans, much attention is focused on CT protocol review and improvement. In fact, annual protocol reviews will soon be required for ACR CT accreditation. A major challenge in the protocol review process is determining whether a current protocol is optimal and deciding what steps to take to improve it. In this paper, the authors describe methods for pinpointing deficiencies in CT protocols and provide a systematic approach for optimizing them. Emphasis is placed on a team approach, with a team consisting of at least one radiologist, one physicist, and one technologist. This core team completes a critical review of all aspects of a CT protocol and carefully evaluates proposed improvements. Changes to protocols are implemented only with consensus of the core team, with consideration of all aspects of the CT examination, including image quality, radiation dose, patient care and safety, and workflow.


Subject(s)
Practice Guidelines as Topic , Radiation Protection/standards , Radiographic Image Enhancement/standards , Radiology/standards , Tomography, X-Ray Computed/standards , United States
19.
J Am Coll Radiol ; 11(3): 271-278, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24589403

ABSTRACT

The increase in radiation exposure due to CT scans has been of growing concern in recent years. CT scanners differ in their capabilities, and various indications require unique protocols, but there remains room for standardization and optimization. In this paper, the authors summarize approaches to reduce dose, as discussed in lectures constituting the first session of the 2013 UCSF Virtual Symposium on Radiation Safety and Computed Tomography. The experience of scanning at low dose in different body regions, for both diagnostic and interventional CT procedures, is addressed. An essential primary step is justifying the medical need for each scan. General guiding principles for reducing dose include tailoring a scan to a patient, minimizing scan length, use of tube current modulation and minimizing tube current, minimizing tube potential, iterative reconstruction, and periodic review of CT studies. Organized efforts for standardization have been spearheaded by professional societies such as the American Association of Physicists in Medicine. Finally, all team members should demonstrate an awareness of the importance of minimizing dose.


Subject(s)
Health Physics/standards , Practice Guidelines as Topic , Radiation Dosage , Radiation Protection/standards , Radiographic Image Enhancement/standards , Radiology/standards , Tomography, X-Ray Computed/standards , United States
20.
AJR Am J Roentgenol ; 202(4): 703-10, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24660695

ABSTRACT

OBJECTIVE: The purpose of this study was to develop a method of measuring rectal radiation dose in vivo during CT colonography (CTC) and assess the accuracy of size-specific dose estimates (SSDEs) relative to that of in vivo dose measurements. MATERIALS AND METHODS: Thermoluminescent dosimeter capsules were attached to a CTC rectal catheter to obtain four measurements of the CT radiation dose in 10 volunteers (five men and five women; age range, 23-87 years; mean age, 70.4 years). A fixed CT technique (supine and prone, 50 mAs and 120 kVp each) was used for CTC. SSDEs and percentile body habitus measurements were based on CT images and directly compared with in vivo dose measurements. RESULTS: The mean absorbed doses delivered to the rectum ranged from 8.8 to 23.6 mGy in the 10 patients, whose mean body habitus was in the 27th percentile among American adults 18-64 years old (range, 0.5-67th percentile). The mean SSDE error was 7.2% (range, 0.6-31.4%). CONCLUSION: This in vivo radiation dose measurement technique can be applied to patients undergoing CTC. Our measurements indicate that SSDEs are reasonable estimates of the rectal absorbed dose. The data obtained in this pilot study can be used as benchmarks for assessing dose estimates using other indirect methods (e.g., Monte Carlo simulations).


Subject(s)
Colonography, Computed Tomographic , Radiation Dosage , Rectum/radiation effects , Thermoluminescent Dosimetry/instrumentation , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Monte Carlo Method , Pilot Projects
SELECTION OF CITATIONS
SEARCH DETAIL
...