Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Extremophiles ; 25(5-6): 501-512, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34643818

ABSTRACT

Since the nineteenth century, a ring-forming disease attacking Antarctic mosses has been reported. However, to date, only the effects on the mosses themselves are known. In this study, we used DNA metabarcoding to investigate the effects on the moss epiphytic algal community at different stages of disease progression. As the disease progressed, algal species richness decreased, although overall abundance was not significantly affected. Prasiolales appeared unaffected, whereas Ulotrichales were more sensitive. Trebouxiales dominated the advanced disease stage, suggesting a possible benefit from the disease, either through the elimination of competition or creation of new niches. Infection is responsible for moss death, leading to habitat loss for other organisms, but pathogenic effects on algae cannot be ruled out. Our data indicate that the disease not only impacts mosses but also other groups, potentially resulting in loss of Antarctic biodiversity. This study provides the first report of the disease effects on epiphytic algal communities of Antarctic bryophytes.


Subject(s)
Bryophyta , Chlorophyta , Antarctic Regions , Biodiversity , Ecosystem
2.
Extremophiles ; 24(2): 227-238, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31758267

ABSTRACT

We accessed the culturable mycobiota present in marine sediments at different depths in Antarctica Ocean. Acremonium fusidioides, Penicillium allii-sativi, Penicillium chrysogenum, Penicillium palitans, Penicillium solitum, and Pseudogymnoascus verrucosus were identified. Penicillium allii-sativi was the dominant species. At least one isolate of each species was capable to present antifungal, trypanocidal, leishmanicidal, antimalarial, nematocidal, or herbicidal activities. Penicillium produced extracts with strong trypanocidal and antimalarial activities, and the extracts of P. solitum and P. chrysogenum demonstrated strong antimalarial activities. Acremonium fusidioides and P. verrucosus displayed strong selective herbicidal properties. The 1H NMR signals for extracts of A. fusidioides, P. chrysogenum, and P. solitum indicated the presence of highly functionalized secondary metabolites, which may be responsible for the biological activities detected. In the deep marine Antarctic sediments, we detected fungal assemblages in which the Penicillium species were found to be dominant and demonstrated capabilities to survive and/or colonise that poly-extreme habitat. Penicillium being a polyextremophile Antarctic species, exhibited strong biological activities and the presence of aromatic compounds in its extracts may indicate that they are wild ancient strains with high genetic and biochemical potentials that enable them to produce bioactive compounds which can be researched in further studies and used in the chemotherapy of neglected tropical diseases as well as in agriculture.


Subject(s)
Ascomycota , Bioprospecting , Antarctic Regions , Antifungal Agents , Fungi , Penicillium
3.
Ecotoxicol Environ Saf ; 122: 136-44, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26232040

ABSTRACT

Rare earth elements such as lanthanum (La) have been used as agricultural inputs in some countries in order to enhance yield and improve crop quality. However, little is known about the effect of La on the growth and structure of soybean, which is an important food and feed crop worldwide. In this study, bioaccumulation of La and its effects on the growth and mitotic index of soybean was evaluated. Soybean plants were exposed to increasing concentrations of La (0, 5, 10, 20, 40, 80, and 160 µM) in nutrient solution for 28 days. Plant response to La was evaluated in terms of plant growth, nutritional characteristics, photosynthetic rate, chlorophyll content, mitotic index, modifications in the ultrastructure of roots and leaves, and La mapping in root and shoot tissues. The results showed that the roots of soybean plants can accumulate sixty-fold more La than shoots. La deposition occurred mainly in cell walls and in crystals dispersed in the root cortex and in the mesophyll. When La was applied, it resulted in increased contents of some essential nutrients (i.e., Ca, P, K, and Mn), while Cu and Fe levels decreased. Moreover, low La concentrations stimulated the photosynthetic rate and total chlorophyll content and lead to a higher incidence of binucleate cells, resulting in a slight increase in roots and shoot biomass. At higher La levels, soybean growth was reduced. This was caused by ultrastructural modifications in the cell wall, thylakoids and chloroplasts, and the appearance of c-metaphases.


Subject(s)
Glycine max/drug effects , Lanthanum/pharmacology , Cell Wall/drug effects , Cell Wall/metabolism , Cell Wall/ultrastructure , Chlorophyll/metabolism , Chloroplasts/drug effects , Chloroplasts/ultrastructure , Mitotic Index , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/ultrastructure , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/ultrastructure , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism , Glycine max/growth & development , Glycine max/metabolism , Glycine max/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...