Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Soft Matter ; 20(11): 2419-2441, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38420837

ABSTRACT

With the rapid development of studies involving droplet microfluidics, drug delivery, cell detection, and microparticle synthesis, among others, many scientists have invested significant efforts to model the flow of these fluid-filled bodies. Motivated by the intricate coupling between hydrodynamics and the interactions of fluid-filled bodies, several methods have been developed. The objective of this review is to present a compact foundation of the methods used in the literature in the context of lattice Boltzmann methods. For hydrodynamics, we focus on the lattice Boltzmann method due to its specific ability to treat time- and spatial-dependent boundary conditions and to incorporate new physical models in a computationally efficient way. We split the existing methods into two groups with regard to the interfacial boundary: fluid-structure and fluid-fluid methods. The fluid-structure methods are characterised by the coupling between fluid dynamics and mechanics of the flowing body, often used in applications involving membranes and similar flexible solid boundaries. We further divide fluid-structure-based methods into two subcategories, those which treat the fluid-structure boundary as a continuum medium and those that treat it as a discrete collection of individual springs and particles. Next, we discuss the fluid-fluid methods, particularly useful for the simulations of fluid-fluid interfaces. We focus on models for immiscible droplets and their interaction in a suspending fluid and describe benchmark tests to validate the models for fluid-filled bodies.

2.
Phys Rev E ; 107(3-2): 035106, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37073003

ABSTRACT

Droplets suspended in fluids flowing through microchannels are often encountered in different contexts and scales, from oil extraction down to microfluidics. They are usually flexible and deform as a product of the interplay between flexibility, hydrodynamics, and interaction with confining walls. Deformability adds distinct characteristics to the nature of the flow of these droplets. We simulate deformable droplets suspended in a fluid at a high volume fraction flowing through a cylindrical wetting channel. We find a discontinuous shear thinning transition, which depends on the droplet deformability. The capillary number is the main dimensionless parameter that controls the transition. Previous results have focused on two-dimensional configurations. Here we show that, in three dimensions, even the velocity profile is different. To perform this study, we improve and extend to three dimensions a multicomponent lattice Boltzmann method which prevents the coalescence between the droplets.

3.
Soft Matter ; 18(39): 7642-7653, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36169262

ABSTRACT

Efficient nutrient mixing is crucial for the survival of bacterial colonies and other living systems known as active nematics. However, the dynamics of this mixing is non-trivial as there is a coupling between nutrients concentration and velocity field. To address this question, we solve the hydrodynamic equation for active nematics to model the bacterial swarms coupled to an advection-diffusion equation for the activity field, which is proportional to the concentration of nutrients. At the interface between active and passive nematics the activity field is transported by the interfacial flows and in turn it modifies them through the generation of active stresses. We find that the dispersion of this conserved activity field is subdiffusive due to the emergence of a barrier of negative defects at the active-passive interface, which hinders the propagation of the motile positive defects.


Subject(s)
Hydrodynamics , Diffusion
4.
J Phys Condens Matter ; 34(20)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35226894

ABSTRACT

We have simulated the motion of a single vertical, two-dimensional liquid bridge spanning the gap between two flat, horizontal solid substrates of given wettabilities, using a multicomponent pseudopotential lattice Boltzmann method. For this simple geometry, the Young-Laplace equation can be solved (quasi-)analytically to yield the equilibrium bridge shape under gravity, which provides a check on the validity of the numerical method. In steady-state conditions, we calculate the drag force exerted by the moving bridge on the confining substrates as a function of its velocity, for different contact angles and Bond numbers. We also study how the bridge deforms as it moves, as parametrized by the changes in the advancing and receding contact angles at the substrates relative to their equilibrium values. Finally, starting from a bridge within the range of contact angles and Bond numbers in which it can exist at equilibrium, we investigate how fast it must move in order to break up.

5.
J Phys Condens Matter ; 34(3)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34607323

ABSTRACT

We investigate, numerically, the effects of externally imposed material flows on the structure and temporal evolution of liquid crystal (LC) skyrmions. The dynamics of a 2D system of skyrmions is modeled using the Ericksen-Leslie theory, which is based on two coupled equations, one for material flow and the other for the director field. As the time scales of the velocity and director fields differ by several orders of magnitude for realistic values of the system parameters, we have simplified the calculations by assuming that the velocity relaxes instantaneously when compared to the relaxation of the director field. Thus, we have used a finite-differences method known as artificial compressibility with adaptive time step to solve the velocity field and a fourth-order Runge-Kutta method for the director field. We characterized the skyrmion shape or configuration as a function of the time and the average velocity of the flow field. We found that for velocities above a certain threshold, the skyrmions stretch in the direction perpendicular to the flow, by contrast to the regime of weak flows where the skyrmions stretch along the streamlines of the flow field. These two regimes are separated by an abrupt (first-order) dynamical transition, which is robust with respect to e.g., the LC elastic anisotropy. Additionally, we have found how the presence of a second skyrmion affects the evolution of the shape of the skyrmions, by comparing the evolution of pairs of skyrmions to the evolution of a single-skyrmion.

6.
Philos Trans A Math Phys Eng Sci ; 379(2208): 20200394, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34455836

ABSTRACT

Activity in nematics drives interfacial flows that lead to preferential alignment that is tangential or planar for extensile systems (pushers) and perpendicular or homeotropic for contractile ones (pullers). This alignment is known as active anchoring and has been reported for a number of systems and described using active nematic hydrodynamic theories. The latter are based on the one-elastic constant approximation, i.e. they assume elastic isotropy of the underlying passive nematic. Real nematics, however, have different elastic constants, which lead to interfacial anchoring. In this paper, we consider elastic anisotropy in multiphase and multicomponent hydrodynamic models of active nematics and investigate the competition between the interfacial alignment driven by the elastic anisotropy of the passive nematic and the active anchoring. We start by considering systems with translational invariance to analyse the alignment at flat interfaces and, then, consider two-dimensional systems and active nematic droplets. We investigate the competition of the two types of anchoring over a wide range of the other parameters that characterize the system. The results of the simulations reveal that the active anchoring dominates except at very low activities, when the interfaces are static. In addition, we found that the elastic anisotropy does not affect the dynamics but changes the active length that becomes anisotropic. This article is part of the theme issue 'Progress in mesoscale methods for fluid dynamics simulation'.

7.
Soft Matter ; 16(17): 4256-4266, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32301453

ABSTRACT

Motivated by results for the propagation of active-passive interfaces of bacterial Serratia marcescens swarms [Nat. Commun., 2018, 9, 5373], we used a hydrodynamic multiphase model to investigate the propagation of interfaces of active nematics on substrates. We characterized the active nematic phase of the model through the calculation of the spatial and temporal auto correlation functions and the energy spectrum and discussed its description of the statistical dynamics of the swarms reported in the experiment. We then studied the propagation of circular and flat active-passive interfaces. We found that the closing time of the circular passive domain decays quadratically with the activity and that the structure factor of the flat interface is similar to that reported for the swarms, with an activity dependent exponent. Finally, the effect of the substrate friction was investigated. We found an activity dependent threshold, above which the turbulent active nematic forms isolated islands that shrink until the system becomes isotropic and below which the active nematic expands, with a well defined propagating interface. We also found that the interface becomes static in the presence of a friction gradient.

8.
Soft Matter ; 15(34): 6819-6829, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31334740

ABSTRACT

We use numerical simulations to investigate the hydrodynamic behavior of the interface between nematic (N) and isotropic (I) phases of a confined active liquid crystal. At low activities, a stable interface with constant shape and velocity is observed separating the two phases. For nematics in homeotropic channels, the velocity of the interface at the NI transition increases from zero (i) linearly with the activity for contractile systems and (ii) quadratically for extensile ones. Interestingly, the nematic phase expands for contractile systems while it contracts for extensile ones, as a result of the active forces at the interface. Since both activity and temperature affect the stability of the nematic, for active nematics in the stable regime the temperature can be tuned to observe static interfaces, providing an operational definition for the coexistence of active nematic and isotropic phases. At higher activities, beyond the stable regime, an interfacial instability is observed for extensile nematics. In this regime defects are nucleated at the interface and move away from it. The dynamics of these defects is regular and persists asymptotically for a finite range of activities. We used an improved hybrid model of finite differences and the lattice Boltzmann method with a multi-relaxation-time collision operator, the accuracy of which allowed us to characterize the dynamics of the distinct interfacial regimes.

9.
Article in English | MEDLINE | ID: mdl-24827360

ABSTRACT

The Boltzmann equation with the Bhatnagar-Gross-Krook collision operator is considered for the Bose-Einstein and Fermi-Dirac equilibrium distribution functions. We show that the expansion of the microscopic velocity in terms of Hermite polynomials must be carried to the fourth order to correctly describe the energy equation. The viscosity and thermal coefficients, previously obtained by Yang et al. [Shi and Yang, J. Comput. Phys. 227, 9389 (2008); Yang and Hung, Phys. Rev. E 79, 056708 (2009)] through the Uehling-Uhlenbeck approach, are also derived here. Thus the construction of a lattice Boltzmann method for the quantum fluid is possible provided that the Bose-Einstein and Fermi-Dirac equilibrium distribution functions are expanded to fourth order in the Hermite polynomials.

SELECTION OF CITATIONS
SEARCH DETAIL
...