Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitol Res ; 120(1): 321-335, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33191446

ABSTRACT

Treatment for visceral leishmaniasis (VL) is hampered mainly by drug toxicity, their high cost, and parasite resistance. Drug development is a long and pricey process, and therefore, drug repositioning may be an alternative worth pursuing. Cardenolides are used to treat cardiac diseases, especially those obtained from Digitalis species. In the present study, cardenolide digitoxigenin (DIGI) obtained from a methanolic extract of Digitalis lanata leaves was tested for its antileishmanial activity against Leishmania infantum species. Results showed that 50% Leishmania and murine macrophage inhibitory concentrations (IC50 and CC50, respectively) were of 6.9 ± 1.5 and 295.3 ± 14.5 µg/mL, respectively. With amphotericin B (AmpB) deoxycholate, used as a control drug, values of 0.13 ± 0.02 and 0.79 ± 0.12 µg/mL, respectively, were observed. Selectivity index (SI) values were of 42.8 and 6.1 for DIGI and AmpB, respectively. Preliminary studies suggested that the mechanism of action for DIGI is to cause alterations in the mitochondrial membrane potential, to increase the levels of reactive oxygen species and induce accumulation of lipid bodies in the parasites. DIGI was incorporated into Pluronic® F127-based polymeric micelles, and the formula (DIGI/Mic) was used to treat L. infantum-infected mice. Miltefosine was used as a control drug. Results showed that animals treated with either miltefosine, DIGI, or DIGI/Mic presented significant reductions in the parasite load in their spleens, livers, bone marrows, and draining lymph nodes, as well as the development of a specific Th1-type response, when compared with the controls. Results obtained 1 day after treatment were corroborated with data corresponding to 15 days after therapy. Importantly, treatment with DIGI/Mic induced better parasitological and immunological responses when compared with miltefosine- and DIGI-treated mice. In conclusion, DIGI/Mic has the potential to be used as a therapeutic agent to protect against L. infantum infection, and it is therefore worth of consideration in future studies addressing VL treatment.


Subject(s)
Antiprotozoal Agents/therapeutic use , Digitoxigenin/therapeutic use , Drug Repositioning/methods , Leishmania infantum/drug effects , Leishmaniasis, Visceral/drug therapy , Poloxamer/therapeutic use , Amphotericin B/therapeutic use , Animals , Deoxycholic Acid/therapeutic use , Drug Combinations , Female , Liver/parasitology , Macrophages/drug effects , Macrophages/parasitology , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred BALB C , Micelles , Parasite Load , Reactive Oxygen Species , Spleen/parasitology
2.
Parasitol Int ; 73: 101966, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31362122

ABSTRACT

The identification of new therapeutics to treat leishmaniasis is desirable, since available drugs are toxic and present high cost and/or poor availability. Therefore, the discovery of safer, more effective and selective pharmaceutical options is of utmost importance. Efforts towards the development of new candidates based on molecule analogs with known biological functions have been an interesting and cost-effective strategy. In this context, quinoline derivatives have proven to be effective biological activities against distinct diseases. In the present study, a new chloroquinoline derivate, AM1009, was in vitro tested against two Leishmania species that cause leishmaniasis. The present study analyzed the necessary inhibitory concentration to preclude 50% of the Leishmania promastigotes and axenic amastigotes (EC50 value), as well as the inhibitory concentrations to preclude 50% of the murine macrophages and human red blood cells (CC50 and RBC50 values, respectively). In addition, the treatment of infected macrophages and the inhibition of infection using pre-treated parasites were also investigated, as was the mechanism of action of the molecule in L. amazonensis. To investigate the in vivo therapeutic effect, BALB/c mice were infected with L. amazonensis and later treated with AM1009. Parasitological and immunological parameters were also evaluated. Clioquinol, a known antileishmanial quinoline derivate, and amphotericin B (AmpB), were used as molecule and drug controls, respectively. Results in both in vitro and in vivo experiments showed a better and more selective action of AM1009 to kill the in vitro parasites, as well as in treating infected mice, when compared to results obtained using clioquinol or AmpB. AM1009-treated animals presented significantly lower average lesion diameter and parasite burden in the infected tissue and organs evaluated in this study, as well as a more polarized antileishmanial Th1 immune response and low renal and hepatic toxicity. This result suggests that AM1009 should be considered a possible therapeutic target to be evaluated in future studies for treatment against leishmaniasis.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania/drug effects , Leishmaniasis/drug therapy , Quinolines/pharmacology , Animals , Female , Mice , Mice, Inbred BALB C , Species Specificity
3.
Exp Parasitol ; 199: 30-37, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30817917

ABSTRACT

The treatment against leishmaniasis presents problems, since the currently used drugs are toxic and/or have high costs. In addition, parasite resistance has increased. As a consequence, in this study, a chloroquinolin derivative, namely 7-chloro-N,N-dimethylquinolin-4-amine or GF1059, was in vitro and in vivo tested against Leishmania parasites. Experiments were performed to evaluate in vitro antileishmanial activity and cytotoxicity, as well as the treatment of infected macrophages and the inhibition of infection using pre-treated parasites. This study also investigated the GF1059 mechanism of action in L. amazonensis. Results showed that the compound was highly effective against L. infantum and L. amazonensis, presenting a selectivity index of 154.6 and 86.4, respectively, against promastigotes and of 137.6 and 74.3, respectively, against amastigotes. GF1059 was also effective in the treatment of infected macrophages and inhibited the infection of these cells when parasites were pre-incubated with it. The molecule also induced changes in the parasites' mitochondrial membrane potential and cell integrity, and caused an increase in the reactive oxygen species production in L. amazonensis. Experiments performed in BALB/c mice, which had been previously infected with L. amazonensis promastigotes, and thus treated with GF1059, showed that these animals presented significant reductions in the parasite load when the infected tissue, spleen, liver, and draining lymph node were evaluated. GF1059-treated mice presented both lower parasitism and low levels of enzymatic markers, as compared to those receiving amphotericin B, which was used as control. In conclusion, data suggested that GF1059 can be considered a possible therapeutic target to be tested against leishmaniasis.


Subject(s)
Antiprotozoal Agents/pharmacology , Chloroquinolinols/pharmacology , Leishmania infantum/drug effects , Leishmania mexicana/drug effects , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Visceral/parasitology , Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Amphotericin B/toxicity , Animals , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/toxicity , Chloroquinolinols/therapeutic use , Chloroquinolinols/toxicity , Disease Models, Animal , Erythrocytes/drug effects , Female , Inhibitory Concentration 50 , Leishmania infantum/growth & development , Leishmania mexicana/growth & development , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Visceral/drug therapy , Liver/parasitology , Lymph Nodes/parasitology , Macrophages/drug effects , Macrophages/parasitology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/parasitology , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred BALB C , Parasite Load , Reactive Oxygen Species/metabolism , Spleen/parasitology
4.
J Mol Graph Model ; 87: 89-97, 2019 03.
Article in English | MEDLINE | ID: mdl-30522092

ABSTRACT

New therapeutic strategies against leishmaniasis are desirable, since the treatment against disease presents problems, such as the toxicity, high cost and/or parasite resistance. As consequence, new antileishmanial compounds are necessary to be identified, as presenting high activity against Leishmania, but low toxicity in mammalian hosts. In the present study, a Leishmania proteome mining strategy was developed, in order to select new drug targets with low homology to human proteins, but that are considered relevant for the parasite' survival. Results showed a hypothetical protein, which was functionally annotated as a glucosidase-like protein, as presenting such characteristics. This protein was associated with the metabolic network of the N-Glycan biosynthesis pathway in Leishmania, and two specific inhibitors - acarbose and miglitol - were predicted to be potential targets against it. In this context, miglitol [1-(2-Hydroxyethyl)-2-(hydroxymethyl)piperidine-3,4,5-triol] was tested against stationary promastigotes and axenic amastigotes of the Leishmania amazonensis and L. infantum species, and results showed high values of antileishmanial inhibition against both parasite species. Miglitol showed also efficacy in the treatment of Leishmania-infected macrophages; thus denoting its potential use as an antileishmanial candidate. In conclusion, this work presents a new drug target identified by a proteome mining strategy associated with bioinformatics tools, and suggested its use as a possible candidate to be applied in the treatment against disease.


Subject(s)
Antiprotozoal Agents/chemistry , Computational Biology , Data Mining , Drug Discovery , Leishmania/metabolism , Proteome , Proteomics , Animals , Antiprotozoal Agents/pharmacology , Computational Biology/methods , Female , Humans , Leishmania/drug effects , Leishmania/genetics , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , Macrophages/drug effects , Macrophages/parasitology , Mice , Models, Molecular , Molecular Sequence Annotation , Protein Conformation , Proteomics/methods , Structure-Activity Relationship
5.
PLoS Negl Trop Dis ; 6(1): e1430, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22272364

ABSTRACT

BACKGROUND: The present study aims to identify antigens in protein extracts of promastigote and amastigote-like Leishmania (Leishmania) chagasi syn. L. (L.) infantum recognized by antibodies present in the sera of dogs with asymptomatic and symptomatic visceral leishmaniasis (VL). METHODOLOGY/PRINCIPAL FINDINGS: Proteins recognized by sera samples were separated by two-dimensional electrophoresis (2DE) and identified by mass spectrometry. A total of 550 spots were observed in the 2DE gels, and approximately 104 proteins were identified. Several stage-specific proteins could be identified by either or both classes of sera, including, as expected, previously known proteins identified as diagnosis, virulence factors, drug targets, or vaccine candidates. Three, seven, and five hypothetical proteins could be identified in promastigote antigenic extracts; while two, eleven, and three hypothetical proteins could be identified in amastigote-like antigenic extracts by asymptomatic and symptomatic sera, as well as a combination of both, respectively. CONCLUSIONS/SIGNIFICANCE: The present study represents a significant contribution not only in identifying stage-specific L. infantum molecules, but also in revealing the expression of a large number of hypothetical proteins. Moreover, when combined, the identified proteins constitute a significant source of information for the improvement of diagnostic tools and/or vaccine development to VL.


Subject(s)
Dog Diseases/parasitology , Electrophoresis, Gel, Two-Dimensional/veterinary , Leishmania/metabolism , Leishmaniasis, Visceral/veterinary , Protozoan Proteins/metabolism , Animals , Databases, Protein , Dogs , Gene Expression Regulation/physiology , Leishmaniasis, Visceral/parasitology , Protozoan Proteins/genetics , Tandem Mass Spectrometry
6.
Clin Vaccine Immunol ; 16(12): 1774-80, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19812259

ABSTRACT

In the present work, we have analyzed the antigenicity of Leishmania species ribosomal proteins (LRPs). To accomplish this, Leishmania infantum ribosomes were biochemically purified from promastigote cytosolic extracts, and their reactivities were analyzed by using the sera from dogs naturally infected with L. infantum. Since antibodies reacting against different ribosomal proteins were observed in all the serum samples obtained from dogs with symptomatic visceral leishmaniasis tested, we have analyzed the potential usefulness of the LRP extracts in the development of an enzyme-linked immunosorbent assay (ELISA) for the serodiagnosis of canine visceral leishmaniasis (CVL) in an area of Brazil where visceral leishmaniasis is endemic due to infection by Leishmania chagasi. A comparative ELISA with crude soluble Leishmania chagasi antigen (SLA) and L. infantum LRPs was performed. LRP- and SLA-based ELISAs gave similar sensitivities for the diagnosis of symptomatic CVL, but the LRP extract provided a very high sensitivity for the detection of oligosymptomatic and asymptomatic dogs. In addition, an LRP-based ELISA showed a higher specificity when the sera from dogs harboring other infections were included in the analysis. The LRP antigen displayed no cross-reactivity with sera from dogs that had any of the other diseases tested, notably, Chagas' disease. Our findings suggest that LRPs are a potential tool for the diagnosis of CVL and will be particularly useful for the diagnosis of asymptomatic CVL.


Subject(s)
Antigens, Protozoan/immunology , Dog Diseases/diagnosis , Leishmania infantum/immunology , Leishmania/immunology , Leishmaniasis, Visceral/veterinary , Ribosomal Proteins/immunology , Animals , Antibodies, Protozoan/blood , Cross Reactions/immunology , Dog Diseases/immunology , Dog Diseases/parasitology , Dogs , Enzyme-Linked Immunosorbent Assay , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/immunology , Serologic Tests/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...