Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Ther Med ; 13(5): 1779-1788, 2017 May.
Article in English | MEDLINE | ID: mdl-28565767

ABSTRACT

The aim of the present study was to investigate whether feeder layers composed of human hair follicle-derived mesenchymal stem cells (hHFDCs) are able to support human embryonic stem cells (hESCs). hHFDCs and mouse embryonic fibroblasts (MEFs) were isolated and cultured in Dulbecco's modified Eagle's medium (DMEM)/F-12 and low-glucose DMEM, respectively. hHFDCs were passaged three times and subsequently characterized. hHFDCs and MEFs were mitotically inactivated with mitomycin C for 3 h prior to co-culture with H9-hESCs. hESCs were initially established on a mouse feeder layer, subsequently transferred onto a human feeder layer and split every 5 days. Cell morphology, expression of specific 'undifferentiation' markers and growth factors, and the differentiation capacity of hESCs grown on the hHFDC feeder layer were analyzed. hHFDCs are adherent to plastic, possess the classic mesenchymal stem cell phenotype [they express cluster of differentiation (CD)90, CD73 and CD105] and are able to differentiate into adipocytes, chondroblasts and osteocytes, indicating that these cells are multipotent. Population-doubling time analysis revealed that hHFDCs rapidly proliferate over 34.5 h. As a feeder layer, hHFDC behaved similarly to MEF in maintaining the morphology of hESCs. The results of alkaline phosphatase activity, reverse transcription-quantitative polymerase chain reaction analysis of the expression of pluripotency transcription factors [octamer-binding transcription factor 4 (Oct4), Nanog and sex determining region Y-box 2], and immunofluorescence assays of markers (stage-specific embryonic antigen-4 and Oct4) in hESCs co-cultured over hHFDC, indicated that the undifferentiated state of hESCs was preserved. No change in the level of growth factor transcripts (bone morphogenetic protein 4, fibroblast growth factor-2, vascular endothelial growth factor, Pigment epithelium-derived factor and transforming growth factor-ß1) was detected for either feeder layer prior to or following inactivation. Similar phenotypes of embryoid body formation, size and morphology were observed in the hHFDC and MEF feeders. In conclusion, hHFDC maintained hESCs in an undifferentiated state comparable to MEF in standard conditions, which may be an important finding regarding the establishment of stem cell-based translational applications.

2.
Cell Med ; 7(1): 25-35, 2014 Nov 05.
Article in English | MEDLINE | ID: mdl-26858890

ABSTRACT

Human embryonic stem cells (hESCs) in general require coculture with feeder layers in order to remain undifferentiated. However, the use of animal-derived feeder layers is incompatible with the clinical setting. The objective of this work was to investigate whether human menstrual blood-derived mesenchymal cells (MBMCs) can substitute mouse embryonic fibroblasts (MEFs) as a feeder layer for H9-hESCs. Both feeder cell types were isolated and cultured in DMEM F-12 and high glucose DMEM, respectively. After three passages, they were inactivated with mitomycin C. To test MBMC feeder layer capacity, hESCs were grown over MBMCs and MEFs under standard conditions. hESC growth, proliferation, survival, and maintenance of the undifferentiated state were evaluated. hESCs grown over MBMCs preserved their undifferentiated state presenting standard morphology, expressing alkaline phosphatase, transcription factors OCT3/4, SOX2, and NANOG by RT-PCR and SSEA-4 and OCT3/4 by immunofluorescence assays. It is noteworthy that none of the feeder cells expressed these proteins. The average colony size of the hESCs on MBMCs was higher when compared to MEFs (p < 0.05; mean ± SD, n = 3). Growth factor analysis revealed amplification of the transcripts for FGF-2, BMP4, TGF-ß, VEGF, and PEDF by RT-PCR in MBMCs and MEFs before and after inactivation. Furthermore, similar embryoid body formation, size, and morphology were observed in both feeder layers. In addition, EBs expressed marker genes for the three germ layers cultured on both feeder cells. In conclusion, MBMCs are able to maintain hESCs in an undifferentiated state with comparable efficiency to MEFs. Therefore, MBMCs are a suitable alternative to animal-derived feeder layers for growing hESCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...