Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Sci Transl Med ; 16(750): eadi4125, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838135

ABSTRACT

Chronic inflammation is a constitutive component of many age-related diseases, including age-related macular degeneration (AMD). Here, we identified interleukin-1 receptor-associated kinase M (IRAK-M) as a key immunoregulator in retinal pigment epithelium (RPE) that declines during the aging process. Rare genetic variants of IRAK3, which encodes IRAK-M, were associated with an increased likelihood of developing AMD. In human samples and mouse models, IRAK-M abundance in the RPE declined with advancing age or exposure to oxidative stress and was further reduced in AMD. Irak3-knockout mice exhibited an increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M led to a disruption in RPE cell homeostasis, characterized by compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of adeno-associated virus (AAV)-expressing human IRAK3 rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in Irak3-knockout mice. Our data show that replenishment of IRAK-M in the RPE may redress dysregulated pro-inflammatory processes in AMD, suggesting a potential treatment for retinal degeneration.


Subject(s)
Interleukin-1 Receptor-Associated Kinases , Mice, Knockout , Oxidative Stress , Retinal Degeneration , Retinal Pigment Epithelium , Animals , Humans , Male , Mice , Cellular Senescence , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics , Mice, Inbred C57BL , Mitochondria/metabolism , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Degeneration/genetics , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology
2.
Diagnostics (Basel) ; 14(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786303

ABSTRACT

(1) Background: We reviewed a stem cell-derived therapeutic strategy for advanced neovascular age-related macular degeneration (nAMD) using a human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE) monolayer delivered on a coated, synthetic basement membrane (BM)-the patch-and assessed the presence and distribution of hESC-RPE over 5 years following transplantation, as well as functional outcomes. (2) Methods: Two subjects with acute vision loss due to sub-macular haemorrhage in advanced nAMD received the hESC-RPE patch. Systematic immunosuppression was used peri-operatively followed by local depot immunosuppression. The subjects were monitored for five years with observation of RPE patch pigmentation, extension beyond the patch boundary into surrounding retina, thickness of hESC-RPE and synthetic BM and review for migration and proliferation of hESC-RPE. Visual function was also assessed. (3) Results: The two study participants showed clear RPE characteristics of the patch, preservation of some retinal ultrastructure with signs of remodelling, fibrosis and thinning on optical coherence tomography over the 5-year period. For both participants, there was evidence of pigment extension beyond the patch continuing until 12 months post-operatively, which stabilised and was preserved until 5 years post-operatively. Measurement of hESC-RPE and BM thickness over time for both cases were consistent with predefined histological measurements of these two layers. There was no evidence of distant RPE migration or proliferation in either case beyond the monolayer. Sustained visual acuity improvement was apparent for 2 years in both subjects, with one subject maintaining the improvement for 5 years. Both subjects demonstrated initial improvement in fixation and microperimetry compared to baseline, at year 1, although only one maintained this at 4 years post-intervention. (4) Conclusions: hESC-RPE patches show evidence of continued pigmentation, with extension, to cover bare host basement membrane for up to 5 years post-implantation. There is evidence that this represents functional RPE on the patch and at the patch border where host RPE is absent. The measurements for thickness of hESC-RPE and BM suggest persistence of both layers at 5 years. No safety concerns were raised for the hypothetical risk of RPE migration, proliferation or tumour formation. Visual function also showed sustained improvement for 2 years in one subject and 5 years in the other subject.

4.
bioRxiv ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37808640

ABSTRACT

Unchecked, chronic inflammation is a constitutive component of age-related diseases, including age-related macular degeneration (AMD). Here we identified interleukin-1 receptor-associated kinase (IRAK)-M as a key immunoregulator in retinal pigment epithelium (RPE) that declines with age. Rare genetic variants of IRAK-M increased the likelihood of AMD. IRAK-M expression in RPE declined with age or oxidative stress and was further reduced in AMD. IRAK-M-deficient mice exhibited increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M disrupted RPE cell homeostasis, including compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of AAV-expressing IRAK-M rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in IRAK-M-deficient mice. Our data support that replenishment of IRAK-M expression may redress dysregulated pro-inflammatory processes in AMD, thereby treating degeneration.

5.
J Anim Ecol ; 92(1): 97-111, 2023 01.
Article in English | MEDLINE | ID: mdl-36321197

ABSTRACT

Many migratory species are in decline across their geographical ranges. Single-population studies can provide important insights into drivers at a local scale, but effective conservation requires multi-population perspectives. This is challenging because relevant data are often hard to consolidate, and state-of-the-art analytical tools are typically tailored to specific datasets. We capitalized on a recent data harmonization initiative (SPI-Birds) and linked it to a generalized modelling framework to identify the demographic and environmental drivers of large-scale population decline in migratory pied flycatchers (Ficedula hypoleuca) breeding across Britain. We implemented a generalized integrated population model (IPM) to estimate age-specific vital rates, including their dependency on environmental conditions, and total and breeding population size of pied flycatchers using long-term (34-64 years) monitoring data from seven locations representative of the British breeding range. We then quantified the relative contributions of different vital rates and population structure to changes in short- and long-term population growth rate using transient life table response experiments (LTREs). Substantial covariation in population sizes across breeding locations suggested that change was the result of large-scale drivers. This was supported by LTRE analyses, which attributed past changes in short-term population growth rates and long-term population trends primarily to variation in annual survival and dispersal dynamics, which largely act during migration and/or nonbreeding season. Contributions of variation in local reproductive parameters were small in comparison, despite sensitivity to local temperature and rainfall within the breeding period. We show that both short- and long-term population changes of British breeding pied flycatchers are likely linked to factors acting during migration and in nonbreeding areas, where future research should be prioritized. We illustrate the potential of multi-population analyses for informing management at (inter)national scales and highlight the importance of data standardization, generalized and accessible analytical tools, and reproducible workflows to achieve them.


Subject(s)
Songbirds , Animals , Population Dynamics , Songbirds/physiology , Seasons , Population Growth , Temperature , Animal Migration
6.
Front Epidemiol ; 3: 1066158, 2023.
Article in English | MEDLINE | ID: mdl-38455905

ABSTRACT

War and conflict are global phenomena, identified as stress-inducing triggers for epigenetic modifications. In this state-of-the-science narrative review based on systematic principles, we summarise existing data to explore the outcomes of these exposures especially in veterans and show that they may result in an increased likelihood of developing gastrointestinal, auditory, metabolic and circadian issues, as well as post-traumatic stress disorder (PTSD). We also note that, despite a potential "healthy soldier effect", both veterans and civilians with PTSD exhibit the altered DNA methylation status in hypothalamic-pituitary-adrenal (HPA) axis regulatory genes such as NR3C1. Genes associated with sleep (PAX8; LHX1) are seen to be differentially methylated in veterans. A limited number of studies also revealed hereditary effects of war exposure across groups: decreased cortisol levels and a heightened (sex-linked) mortality risk in offspring. Future large-scale studies further identifying the heritable risks of war, as well as any potential differences between military and civilian populations, would be valuable to inform future healthcare directives.

7.
Stem Cell Reports ; 17(10): 2187-2202, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36084639

ABSTRACT

Leber congenital amaurosis type 4 (LCA4), caused by AIPL1 mutations, is characterized by severe sight impairment in infancy and rapidly progressing degeneration of photoreceptor cells. We generated retinal organoids using induced pluripotent stem cells (iPSCs) from renal epithelial cells obtained from four children with AIPL1 nonsense mutations. iPSC-derived photoreceptors exhibited the molecular hallmarks of LCA4, including undetectable AIPL1 and rod cyclic guanosine monophosphate (cGMP) phosphodiesterase (PDE6) compared with control or CRISPR-corrected organoids. Increased levels of cGMP were detected. The translational readthrough-inducing drug (TRID) PTC124 was investigated as a potential therapeutic agent. LCA4 retinal organoids exhibited low levels of rescue of full-length AIPL1. However, this was insufficient to fully restore PDE6 in photoreceptors and reduce cGMP. LCA4 retinal organoids are a valuable platform for in vitro investigation of novel therapeutic agents.


Subject(s)
Leber Congenital Amaurosis , Adaptor Proteins, Signal Transducing/genetics , Carrier Proteins/genetics , Child , Codon, Nonsense , Eye Proteins/genetics , Eye Proteins/metabolism , Guanosine Monophosphate , Humans , Leber Congenital Amaurosis/genetics , Leber Congenital Amaurosis/therapy , Organoids/metabolism , Oxadiazoles , Phosphoric Diester Hydrolases/genetics
8.
J Cell Biol ; 221(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36121394

ABSTRACT

Phagocytosis requires actin dynamics, but whether actomyosin contractility plays a role in this morphodynamic process is unclear. Here, we show that in the retinal pigment epithelium (RPE), particle binding to Mer Tyrosine Kinase (MerTK), a widely expressed phagocytic receptor, stimulates phosphorylation of the Cdc42 GEF Dbl3, triggering activation of MRCKß/myosin-II and its coeffector N-WASP, membrane deformation, and cup formation. Continued MRCKß/myosin-II activity then drives recruitment of a mechanosensing bridge, enabling cytoskeletal force transmission, cup closure, and particle internalization. In vivo, MRCKß is essential for RPE phagocytosis and retinal integrity. MerTK-independent activation of MRCKß signaling by a phosphomimetic Dbl3 mutant rescues phagocytosis in retinitis pigmentosa RPE cells lacking functional MerTK. MRCKß is also required for efficient particle translocation from the cortex into the cell body in Fc receptor-mediated phagocytosis. Thus, conserved MRCKß signaling at the cortex controls spatiotemporal regulation of actomyosin contractility to guide distinct phases of phagocytosis in the RPE and represents the principle phagocytic effector pathway downstream of MerTK.


Subject(s)
Actomyosin , Myotonin-Protein Kinase , Phagocytosis , Actins/metabolism , Actomyosin/metabolism , Myosin Type II/metabolism , Myotonin-Protein Kinase/metabolism , Phagocytosis/physiology , Protein-Tyrosine Kinases , Receptors, Fc , c-Mer Tyrosine Kinase/metabolism
10.
Lab Invest ; 99(10): 1547-1560, 2019 10.
Article in English | MEDLINE | ID: mdl-31101854

ABSTRACT

Diabetic retinopathy is the most common microvascular complication of diabetes and is a major cause of blindness, but an understanding of the pathogenesis of the disease has been hampered by a lack of accurate animal models. Here, we explore the dynamics of retinal cellular changes in the Nile rat (Arvicanthis niloticus), a carbohydrate-sensitive model for type 2 diabetes. The early retinal changes in diabetic Nile rats included increased acellular capillaries and loss of pericytes that correlated linearly with the duration of diabetes. These vascular changes occurred in the presence of microglial infiltration but in the absence of retinal ganglion cell loss. After a prolonged duration of diabetes, the Nile rat also exhibits a spectrum of retinal lesions commonly seen in the human condition including vascular leakage, capillary non-perfusion, and neovascularization. Our longitudinal study documents a range and progression of retinal lesions in the diabetic Nile rat remarkably similar to those observed in human diabetic retinopathy, and suggests that this model will be valuable in identifying new therapeutic strategies.


Subject(s)
Capillaries/pathology , Diabetic Retinopathy/pathology , Retina/pathology , Animals , Disease Progression , Edema/pathology , Longitudinal Studies , Murinae
11.
Hum Mol Genet ; 28(11): 1865-1871, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30689859

ABSTRACT

Choroideremia (CHM) is an x-linked recessive chorioretinal dystrophy, with 30% caused by nonsense mutations in the CHM gene resulting in an in-frame premature termination codon (PTC). Nonsense-mediated mRNA decay (NMD) is the cell's natural surveillance mechanism that detects and destroys PTC-containing transcripts, with UPF1 being the central NMD modulator. NMD efficiency can be variable amongst individuals with some transcripts escaping destruction, leading to the production of a truncated non-functional or partially functional protein. Nonsense suppression drugs, such as ataluren, target these transcripts and read-through the PTC, leading to the production of a full length functional protein. Patients with higher transcript levels are considered to respond better to these drugs, as more substrate is available for read-through. Using Quantitative reverse transcription PCR (RT-qPCR), we show that CHM mRNA expression in blood from nonsense mutation CHM patients is 2.8-fold lower than controls, and varies widely amongst patients, with 40% variation between those carrying the same UGA mutation [c.715 C>T; p.(R239*)]. These results indicate that although NMD machinery is at work, efficiency is highly variable and not wholly dependent on mutation position. No significant difference in CHM mRNA levels was seen between two patients' fibroblasts and their induced pluripotent stem cell-derived retinal pigment epithelium. There was no correlation between CHM mRNA expression and genotype, phenotype or UPF1 transcript levels. NMD inhibition with caffeine was shown to restore CHM mRNA transcripts to near wild-type levels. Baseline mRNA levels may provide a prognostic indicator for response to nonsense suppression therapy, and caffeine may be a useful adjunct to enhance treatment efficacy where indicated.


Subject(s)
Choroideremia/drug therapy , Nonsense Mediated mRNA Decay/genetics , RNA Helicases/genetics , RNA, Messenger/blood , Trans-Activators/genetics , Caffeine/administration & dosage , Choroideremia/blood , Choroideremia/genetics , Choroideremia/physiopathology , Codon, Nonsense/genetics , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation/drug effects , Genotype , Humans , Male , Middle Aged , Mutation/genetics , Nonsense Mediated mRNA Decay/drug effects , Oxadiazoles/administration & dosage , Phenotype , Pluripotent Stem Cells/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism
12.
Regen Med ; 13(8): 935-944, 2018 12.
Article in English | MEDLINE | ID: mdl-30488776

ABSTRACT

Human pluripotent stem cells (hPSCs) have the potential to transform medicine. However, hurdles remain to ensure safety for such cellular products. Science-based understanding of the requirements for source materials is required as are appropriate materials. Leaders in hPSC biology, clinical translation, biomanufacturing and regulatory issues were brought together to define requirements for source materials for the production of hPSC-derived therapies and to identify other key issues for the safety of cell therapy products. While the focus of this meeting was on hPSC-derived cell therapies, many of the issues are generic to all cell-based medicines. The intent of this report is to summarize the key issues discussed and record the consensus reached on each of these by the expert delegates.


Subject(s)
Cell- and Tissue-Based Therapy/standards , Patient Safety , Pluripotent Stem Cells/transplantation , Regenerative Medicine/standards , Cell- and Tissue-Based Therapy/adverse effects , Cell- and Tissue-Based Therapy/methods , Practice Guidelines as Topic , Regenerative Medicine/methods , United Kingdom
13.
Nat Biotechnol ; 36(4): 328-337, 2018 04.
Article in English | MEDLINE | ID: mdl-29553577

ABSTRACT

Age-related macular degeneration (AMD) remains a major cause of blindness, with dysfunction and loss of retinal pigment epithelium (RPE) central to disease progression. We engineered an RPE patch comprising a fully differentiated, human embryonic stem cell (hESC)-derived RPE monolayer on a coated, synthetic basement membrane. We delivered the patch, using a purpose-designed microsurgical tool, into the subretinal space of one eye in each of two patients with severe exudative AMD. Primary endpoints were incidence and severity of adverse events and proportion of subjects with improved best-corrected visual acuity of 15 letters or more. We report successful delivery and survival of the RPE patch by biomicroscopy and optical coherence tomography, and a visual acuity gain of 29 and 21 letters in the two patients, respectively, over 12 months. Only local immunosuppression was used long-term. We also present the preclinical surgical, cell safety and tumorigenicity studies leading to trial approval. This work supports the feasibility and safety of hESC-RPE patch transplantation as a regenerative strategy for AMD.


Subject(s)
Human Embryonic Stem Cells/transplantation , Macular Degeneration/therapy , Retinal Pigment Epithelium/transplantation , Visual Acuity/physiology , Aged , Animals , Basement Membrane/diagnostic imaging , Basement Membrane/growth & development , Cell Differentiation/genetics , Female , Humans , Macular Degeneration/diagnostic imaging , Macular Degeneration/pathology , Male , Mice , Middle Aged , Retinal Pigment Epithelium/diagnostic imaging , Retinal Pigment Epithelium/growth & development , Stem Cell Transplantation/adverse effects , Swine , Tomography, Optical Coherence
15.
Stem Cell Reports ; 9(1): 1-4, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28700896

ABSTRACT

Pluripotent stem cells may acquire genetic and epigenetic variants during culture following their derivation. At a conference organized by the International Stem Cell Initiative, and held at The Jackson Laboratory, Bar Harbor, Maine, October 2016, participants discussed how the appearance of such variants can be monitored and minimized and, crucially, how their significance for the safety of therapeutic applications of these cells can be assessed. A strong recommendation from the meeting was that an international advisory group should be set up to review the genetic and epigenetic changes observed in human pluripotent stem cell lines and establish a framework for evaluating the risks that they may pose for clinical use.


Subject(s)
Cytogenetic Analysis/methods , Epigenesis, Genetic , Genetic Variation , Pluripotent Stem Cells/metabolism , Regenerative Medicine , Humans , Maine , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/transplantation , Regenerative Medicine/methods , Risk Assessment
16.
Prog Brain Res ; 231: 225-244, 2017.
Article in English | MEDLINE | ID: mdl-28554398

ABSTRACT

Age-related macular degeneration remains the most common cause of blindness in the western world, severely comprising patients' and carers' quality of life and presenting a great cost to the healthcare system. As the disease progresses, the retinal pigmented epithelium (RPE) layer at the back of the eye degenerates, contributing to a series of events resulting in visual impairment. The easy accessibility of the eye has allowed for in-depth study of disease progression in patients, while in vivo studies have facilitated investigations into healthy and diseased RPE. Consequently, a number of research groups are examining different approaches for the replacement of RPE cells in age-related macular degeneration (AMD) patients. This chapter examines some of these initial proof-of-principle studies and goes on to review the use of pluripotent stem cells as a source for RPE replacement in a number of current AMD clinical trials. Finally, we consider just some of the regulatory and manufacturing challenges presented in taking a promising AMD treatment from the research bench into clinical trials in patients, and how to mitigate potential risks early in process development.


Subject(s)
Macular Degeneration/therapy , Pluripotent Stem Cells/cytology , Retinal Pigment Epithelium/transplantation , Stem Cell Transplantation , Humans
17.
Hum Mol Genet ; 26(13): 2480-2492, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28444310

ABSTRACT

Ciliary trafficking defects are the underlying cause of many ciliopathies, including Retinitis Pigmentosa (RP). Anterograde intraflagellar transport (IFT) is mediated by kinesin motor proteins; however, the function of the homodimeric Kif17 motor in cilia is poorly understood, whereas Kif7 is known to play an important role in stabilizing cilia tips. Here we identified the ciliary tip kinesins Kif7 and Kif17 as novel interaction partners of the small GTPase Arl3 and its regulatory GTPase activating protein (GAP) Retinitis Pigmentosa 2 (RP2). We show that Arl3 and RP2 mediate the localization of GFP-Kif17 to the cilia tip and competitive binding of RP2 and Arl3 with Kif17 complexes. RP2 and Arl3 also interact with another ciliary tip kinesin, Kif7, which is a conserved regulator of Hedgehog (Hh) signaling. siRNA-mediated loss of RP2 or Arl3 reduced the level of Kif7 at the cilia tip. This was further validated by reduced levels of Kif7 at cilia tips detected in fibroblasts and induced pluripotent stem cell (iPSC) 3D optic cups derived from a patient carrying an RP2 nonsense mutation c.519C > T (p.R120X), which lack detectable RP2 protein. Translational read-through inducing drugs (TRIDs), such as PTC124, were able to restore Kif7 levels at the ciliary tip of RP2 null cells. Collectively, our findings suggest that RP2 and Arl3 regulate the trafficking of specific kinesins to cilia tips and provide additional evidence that TRIDs could be clinically beneficial for patients with this retinal degeneration.


Subject(s)
ADP-Ribosylation Factors/metabolism , Eye Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , ADP-Ribosylation Factors/genetics , Cilia/metabolism , Eye Proteins/genetics , GTP-Binding Proteins , Humans , Induced Pluripotent Stem Cells/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Kinesins/genetics , Kinesins/metabolism , Membrane Proteins/genetics , Protein Transport , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism
18.
Sci Rep ; 7(1): 51, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28246391

ABSTRACT

Inherited retinal dystrophies are an important cause of blindness, for which currently there are no effective treatments. In order to study this heterogeneous group of diseases, adequate disease models are required in order to better understand pathology and to test potential therapies. Induced pluripotent stem cells offer a new way to recapitulate patient specific diseases in vitro, providing an almost limitless amount of material to study. We used fibroblast-derived induced pluripotent stem cells to generate retinal pigment epithelium (RPE) from an individual suffering from retinitis pigmentosa associated with biallelic variants in MERTK. MERTK has an essential role in phagocytosis, one of the major functions of the RPE. The MERTK deficiency in this individual results from a nonsense variant and so the MERTK-RPE cells were subsequently treated with two translational readthrough inducing drugs (G418 & PTC124) to investigate potential restoration of expression of the affected gene and production of a full-length protein. The data show that PTC124 was able to reinstate phagocytosis of labeled photoreceptor outer segments at a reduced, but significant level. These findings represent a confirmation of the usefulness of iPSC derived disease specific models in investigating the pathogenesis and screening potential treatments for these rare blinding disorders.


Subject(s)
Gentamicins/pharmacology , Induced Pluripotent Stem Cells/metabolism , Oxadiazoles/pharmacology , Phagocytosis , Retinitis Pigmentosa/therapy , c-Mer Tyrosine Kinase/metabolism , Adult , Humans , Male , Peptide Chain Elongation, Translational , Photoreceptor Cells/drug effects , Photoreceptor Cells/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , c-Mer Tyrosine Kinase/genetics
19.
Biochem Soc Trans ; 44(5): 1245-1251, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27911706

ABSTRACT

The photoreceptor cells in the retina have a highly specialised sensory cilium, the outer segment (OS), which is important for detecting light. Mutations in cilia-related genes often result in retinal degeneration. The ability to reprogramme human cells into induced pluripotent stem cells and then differentiate them into a wide range of different cell types has revolutionised our ability to study human disease. To date, however, the challenge of producing fully differentiated photoreceptors in vitro has limited the application of this technology in studying retinal degeneration. In this review, we will discuss recent advances in stem cell technology and photoreceptor differentiation. In particular, the development of photoreceptors with rudimentary OS that can be used to understand disease mechanisms and as an important model to test potential new therapies for inherited retinal ciliopathies.


Subject(s)
Ciliopathies/pathology , Ciliopathies/therapy , Induced Pluripotent Stem Cells/cytology , Retina/pathology , Animals , Cell Differentiation/genetics , Cells, Cultured , Cilia/metabolism , Cilia/pathology , Ciliopathies/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Mutation , Retina/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinal Degeneration/therapy
20.
Sci Rep ; 6: 33792, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27653836

ABSTRACT

Autosomal dominant vitreoretinochoroidopathy (ADVIRC) is a rare, early-onset retinal dystrophy characterised by distinct bands of circumferential pigmentary degeneration in the peripheral retina and developmental eye defects. ADVIRC is caused by mutations in the Bestrophin1 (BEST1) gene, which encodes a transmembrane protein thought to function as an ion channel in the basolateral membrane of retinal pigment epithelial (RPE) cells. Previous studies suggest that the distinct ADVIRC phenotype results from alternative splicing of BEST1 pre-mRNA. Here, we have used induced pluripotent stem cell (iPSC) technology to investigate the effects of an ADVIRC associated BEST1 mutation (c.704T > C, p.V235A) in patient-derived iPSC-RPE. We found no evidence of alternate splicing of the BEST1 transcript in ADVIRC iPSC-RPE, however in patient-derived iPSC-RPE, BEST1 was expressed at the basolateral membrane and the apical membrane. During human eye development we show that BEST1 is expressed more abundantly in peripheral RPE compared to central RPE and is also expressed in cells of the developing retina. These results suggest that higher levels of mislocalised BEST1 expression in the periphery, from an early developmental stage, could provide a mechanism that leads to the distinct clinical phenotype observed in ADVIRC patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...