Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 43: 108466, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35873279

ABSTRACT

National and international Vitis variety catalogues can be used as image datasets for computer vision in viticulture. These databases archive ampelographic features and phenology of several grape varieties and plant structures images (e.g. leaf, bunch, shoots). Although these archives represent a potential database for computer vision in viticulture, plant structure images are acquired singularly and mostly not directly in the vineyard. Localization computer vision models would take advantage of multiple objects in the same image, allowing more efficient training. The present images and labels dataset was designed to overcome such limitations and provide suitable images for multiple cluster identification in white grape varieties. A group of 373 images were acquired from later view in vertical shoot position vineyards in six different Italian locations at different phenological stages. Images were then labelled in YOLO labelling format. The dataset was made available both in terms of images and labels. The real number of bunches counted in the field, and the number of bunches visible in the image (not covered by other vine structures) was recorded for a group of images in this dataset.

2.
Sci Total Environ ; 780: 146609, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34030315

ABSTRACT

For the estimation of the soil organic carbon stocks, bulk density (BD) is a fundamental parameter but measured data are usually not available especially when dealing with legacy soil data. It is possible to estimate BD by applying pedotransfer function (PTF). We applied different estimation methods with the aim to define a suitable PTF for BD of arable land for the Mediterranean Basin, which has peculiar climate features that may influence the soil carbon sequestration. To improve the existing BD estimation methods, we used a set of public climatic and topographic data along with the soil texture and organic carbon data. The present work consisted of the following steps: i) development of three PTFs models separately for top (0-0.4 m) and subsoil (0.4-1.2 m), ii) a 10-fold cross-validation, iii) model transferability using an external dataset derived from published data. The development of the new PTFs was based on the training dataset consisting of World Soil Information Service (WoSIS) soil profile data, climatic data from WorldClim at 1 km spatial resolution and Shuttle Radar Topography Mission (SRTM) digital elevation model at 30 m spatial resolution. The three PTFs models were developed using: Multiple Linear Regression stepwise (MLR-S), Multiple Linear Regression backward stepwise (MLR-BS), and Artificial Neural Network (ANN). The predictions of the newly developed PTFs were compared with the BD calculated using the PTF proposed by Manrique and Jones (MJ) and the modelled BD derived from the global SoilGrids dataset. For the topsoil training dataset (N = 129), MLR-S, MLR-BS and ANN had a R2 0.35, 0.58 and 0.86, respectively. For the model transferability, the three PTFs applied to the external topsoil dataset (N = 59), achieved R2 values of 0.06, 0.03 and 0.41. For the subsoil training dataset (N = 180), MLR-S, MLR-BS and ANN the R2 values were 0.36, 0.46 and 0.83, respectively. When applied to the external subsoil dataset (N = 29), the R2 values were 0.05, 0.06 and 0.41. The cross-validation for both top and subsoil dataset, resulted in an intermediate performance compared to calibration and validation with the external dataset. The new ANN PTF outperformed MLR-S, MLR-BS, MJ and SoilGrids approaches for estimating BD. Further improvements may be achieved by additionally considering the time of sampling, agricultural soil management and cultivation practices in predictive models.

3.
Animals (Basel) ; 11(2)2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33572673

ABSTRACT

Over the last two decades, the dairy industry has adopted the use of Automatic Milking Systems (AMS). AMS have the potential to increase the effectiveness of the milking process and sustain animal welfare. This study assessed the state of the art of research activities on AMS through a systematic review of scientific and industrial research. The papers and patents of the last 20 years (2000-2019) were analysed to assess the research tendencies. The words appearing in title, abstract and keywords of a total of 802 documents were processed with the text mining tool. Four clusters were identified (Components, Technology, Process and Animal). For each cluster, the words frequency analysis enabled us to identify the research tendencies and gaps. The results showed that focuses of the scientific and industrial research areas complementary, with scientific papers mainly dealing with topics related to animal and process, and patents giving priority to technology and components. Both scientific and industrial research converged on some crucial objectives, such as animal welfare, process sustainability and technological development. Despite the increasing interest in animal welfare, this review highlighted that further progress is needed to meet the consumers' demand. Moreover, milk yield is still regarded as more valuable compared to milk quality. Therefore, additional effort is necessary on the latter. At the process level, some gaps have been found related to cleaning operations, necessary to improve milk quality and animal health. The use of farm data and their incorporation on herd decision support systems (DSS) appeared optimal. The results presented in this review may be used as an overall assessment useful to address future research.

4.
Data Brief ; 33: 106589, 2020 Dec.
Article in English | MEDLINE | ID: mdl-34026958

ABSTRACT

Agricultural land use plays a critical role in land planning sustainability. Employing a GIS-based decision-making protocol based on spatial and management data represents an appropriate tool for land planning. The Italian vineyards database presented here describes several spatial and management features of 3686 sample vineyards distributed throughout Italy. The dataset is presented as a centroid shapefile with the attribute table. The features were assessed with a GIS-based geospatial analysis. Parameters such as training system and shape of the vineyard block were attributed through visual assessment of Google Earth images. Row spacing, length-width ratio and headland size were determined using QGIS measuring tools. The mean and maximum slope was derived using a 20 m spatial resolution Digital Elevation Model (DEM). This database may help to establish planting criteria of new vineyards which comply with rational and sustainable requirements. Moreover, the dataset could be combined with other agricultural land use data for further analysis of land management. Furthermore, the database could be implemented to support global-scale vineyard management.

SELECTION OF CITATIONS
SEARCH DETAIL
...