Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
2.
World Neurosurg ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38604534

ABSTRACT

BACKGROUND: Many patients with idiopathic normal pressure hydrocephalus (iNPH) have medical comorbidities requiring anticoagulation that could negatively impact outcomes. This study evaluated the safety of ventriculoperitoneal shunt placement in iNPH patients on systemic anticoagulation versus those not on anticoagulation. METHODS: Patients >60 years of age with iNPH who underwent shunting between 2018 and 2022 were retrospectively reviewed. Baseline demographics, comorbidities (quantified by modified frailty index and Charlson comorbidity index), anticoagulant/antiplatelet agent use (other than aspirin), operative details, and complications were collected. Outcomes of interest were the occurrence of postoperative hemorrhage and overdrainage. RESULTS: A total of 234 patients were included in the study (mean age 75.22 ± 6.04 years; 66.7% male); 36 were on anticoagulation/antiplatelet therapy (excluding aspirin). This included 6 on Warfarin, 19 on direct Xa inhibitors, 10 on Clopidogrel, and 1 on both Clopidogrel and Warfarin. Notably, 70% of patients (164/234) used aspirin alone or combined with anticoagulation or clopidogrel. Baseline modified frailty index was similar between groups, but those on anticoagulant/antiplatelet therapy had a higher mean Charlson comorbidity index (2.67 ± 1.87 vs. 1.75 ± 1.84; P = 0.001). Patients on anticoagulants were more likely to experience tract hemorrhage (11.1 vs. 2.5%; P = 0.03), with no significant difference in the rates of intraventricular hemorrhage or overdrainage-related subdural fluid collection. CONCLUSIONS: Anticoagulant and antiplatelet agents are common in the iNPH population, and patients on these agents experienced higher rates of tract hemorrhage following ventriculoperitoneal shunt placement; however, overall hemorrhagic complication rates were similar.

3.
Res Sq ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38558965

ABSTRACT

Background: White matter hyperintensities (WMH) are considered hallmark features of cerebral small vessel disease and have recently been linked to Alzheimer's disease pathology. Their distinct spatial distributions, namely periventricular versus deep WMH, may differ by underlying age-related and pathobiological processes contributing to cognitive decline. We aimed to identify the spatial patterns of WMH using the 4-scale Fazekas visual assessment and explore their differential association with age, vascular health, Alzheimer's imaging markers, namely amyloid and tau burden, and cognition. Because our study consisted of scans from GE and Siemens scanners with different resolutions, we also investigated inter-scanner reproducibility and combinability of WMH measurements on imaging. Methods: We identified 1144 participants from the Mayo Clinic Study of Aging consisting of older adults from Olmsted County, Minnesota with available structural magnetic resonance imaging (MRI), amyloid, and tau positron emission tomography (PET). WMH distribution patterns were assessed on FLAIR-MRI, both 2D axial and 3D, using Fazekas ratings of periventricular and deep WMH severity. We compared the association of periventricular and deep WMH scales with vascular risk factors, amyloid-PET and tau-PET standardized uptake value ratio, WMH volume, and cognition using Pearson partial correlation after adjusting for age. We also evaluated vendor compatibility and reproducibility of the Fazekas scales using intraclass correlations (ICC). Results: Periventricular and deep WMH measurements showed similar correlations with age, cardiometabolic conditions score (vascular risk), and cognition, (p < 0.001). Both periventricular WMH and deep WMH showed weak associations with amyloidosis (R = 0.07, p = < 0.001), and none with tau burden. We found substantial agreement between data from the two scanners for Fazekas measurements (ICC = 0.78). The automated WMH volume had high discriminating power for identifying participants with Fazekas ≥ 2 (area under curve = 0.97). Conclusion: Our study investigates risk factors underlying WMH spatial patterns and their impact on global cognition, with no discernible differences between periventricular and deep WMH. We observed minimal impact of amyloidosis on WMH severity. These findings, coupled with enhanced inter-scanner reproducibility of WMH data, suggest the combinability of inter-scanner data assessed by harmonized protocols in the context of vascular contributions to cognitive impairment and dementia biomarker research.

4.
AJNR Am J Neuroradiol ; 45(5): 662-667, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38485194

ABSTRACT

BACKGROUND AND PURPOSE: Spontaneous intracranial hypotension is a condition resulting from a leak of CSF from the spinal canal arising independent of a medical procedure. Spontaneous intracranial hypotension can present with normal brain MR imaging findings and nonspecific symptoms, leading to the underdiagnosis in some patients and unnecessary invasive myelography in others who are found not to have the condition. Given the likelihood that spontaneous intracranial hypotension alters intracranial biomechanics, the goal of this study was to evaluate MR elastography as a potential noninvasive test to diagnose the condition. MATERIALS AND METHODS: We performed MR elastography in 15 patients with confirmed spontaneous intracranial hypotension from September 2022 to April 2023. Age, sex, symptom duration, and brain MR imaging Bern score were collected. MR elastography data were used to compute stiffness and damping ratio maps, and voxelwise modeling was performed to detect clusters of significant differences in mechanical properties between patients with spontaneous intracranial hypotension and healthy control participants. To evaluate diagnostic accuracy, we summarized each examination by 2 spatial pattern scores (one each for stiffness and damping ratio) and evaluated group-wise discrimination by receiver operating characteristic curve analysis. RESULTS: Patients with spontaneous intracranial hypotension exhibited significant differences in both stiffness and damping ratio (false discovery rate-corrected, Q < 0.05). Pattern analysis discriminated patients with spontaneous intracranial hypotension from healthy controls with an area under the curve of 0.97 overall, and the area under the curve was 0.97 in those without MR imaging findings of spontaneous intracranial hypotension. CONCLUSIONS: Results from this pilot study demonstrate MR elastography as a potential imaging biomarker and a noninvasive method for diagnosing spontaneous intracranial hypotension, including patients with normal brain MR imaging findings.


Subject(s)
Elasticity Imaging Techniques , Intracranial Hypotension , Magnetic Resonance Imaging , Humans , Intracranial Hypotension/diagnostic imaging , Elasticity Imaging Techniques/methods , Female , Male , Adult , Middle Aged , Magnetic Resonance Imaging/methods , Aged , Young Adult
5.
Clin Neurol Neurosurg ; 237: 108123, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38262154

ABSTRACT

INTRODUCTION: Enlarged perivascular spaces (ePVS) may be an indicator of glymphatic dysfunction. Limited studies have evaluated the role of ePVS in idiopathic normal pressure hydrocephalus (iNPH). We aimed to characterize the distribution and number of ePVS in iNPH compared to controls. METHODS: Thirty-eight patients with iNPH and a pre-shunt MRI were identified through clinical practice. Age- and sex-matched controls who had negative MRIs screening for intracranial metastases were identified through a medical record linkage system. The number of ePVS were counted in the basal nuclei (BN) and centrum semiovale (CS) using the Wardlaw method blinded to clinical diagnosis. Imaging features of disproportionately enlarged subarachnoid space hydrocephalus (DESH), callosal angle, Fazekas white matter hyperintensity (WMH) grade, and the presence of microbleeds and lacunes were also evaluated. RESULTS: Both iNPH patients and controls had a mean age of 74 ± 7 years and were 34% female with equal distributions of hypertension, dyslipidemia, diabetes, stroke, and history of smoking. There were fewer ePVS in the CS of patients with iNPH compared to controls (12.66 vs. 20.39, p < 0.001) but the same in the BN (8.95 vs. 11.11, p = 0.08). This remained significant in models accounting for vascular risk factors (p = 0.002) and MRI features of DESH and WMH grade (p = 0.03). CONCLUSIONS: Fewer centrum semiovale ePVS may be a biomarker for iNPH. This pattern may be caused by mechanical obstruction due to upward displacement of the brain leading to reduced glymphatic clearance.


Subject(s)
Hydrocephalus, Normal Pressure , Nervous System Malformations , Humans , Female , Aged , Aged, 80 and over , Male , Hydrocephalus, Normal Pressure/diagnostic imaging , Magnetic Resonance Imaging , Brain , Corpus Callosum , Basal Ganglia
6.
AJNR Am J Neuroradiol ; 45(3): 328-334, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38272572

ABSTRACT

BACKGROUND AND PURPOSE: Normal pressure hydrocephalus is a treatable cause of dementia associated with distinct mechanical property signatures in the brain as measured by MR elastography. In this study, we tested the hypothesis that specific anatomic features of normal pressure hydrocephalus are associated with unique mechanical property alterations. Then, we tested the hypothesis that summary measures of these mechanical signatures can be used to predict clinical outcomes. MATERIALS AND METHODS: MR elastography and structural imaging were performed in 128 patients with suspected normal pressure hydrocephalus and 44 control participants. Patients were categorized into 4 subgroups based on their anatomic features. Surgery outcome was acquired for 68 patients. Voxelwise modeling was performed to detect regions with significantly different mechanical properties between each group. Mechanical signatures were summarized using pattern analysis and were used as features to train classification models and predict shunt outcomes for 2 sets of feature spaces: a limited 2D feature space that included the most common features found in normal pressure hydrocephalus and an expanded 20-dimensional (20D) feature space that included features from all 4 morphologic subgroups. RESULTS: Both the 2D and 20D classifiers performed significantly better than chance for predicting clinical outcomes with estimated areas under the receiver operating characteristic curve of 0.66 and 0.77, respectively (P < .05, permutation test). The 20D classifier significantly improved the diagnostic OR and positive predictive value compared with the 2D classifier (P < .05, permutation test). CONCLUSIONS: MR elastography provides further insight into mechanical alterations in the normal pressure hydrocephalus brain and is a promising, noninvasive method for predicting surgical outcomes in patients with normal pressure hydrocephalus.


Subject(s)
Elasticity Imaging Techniques , Hydrocephalus, Normal Pressure , Hydrocephalus , Humans , Hydrocephalus, Normal Pressure/diagnostic imaging , Hydrocephalus, Normal Pressure/surgery , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/surgery , Treatment Outcome
7.
Alzheimers Dement ; 20(3): 2143-2154, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38265198

ABSTRACT

BACKGROUND: We compared the ability of several plasma biomarkers versus amyloid positron emission tomography (PET) to predict rates of memory decline among cognitively unimpaired individuals. METHODS: We studied 645 Mayo Clinic Study of Aging participants. Predictor variables were age, sex, education, apolipoprotein E (APOE) ε4 genotype, amyloid PET, and plasma amyloid beta (Aß)42/40, phosphorylated tau (p-tau)181, neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and p-tau217. The outcome was a change in a memory composite measure. RESULTS: All plasma biomarkers, except NfL, were associated with mean memory decline in models with individual biomarkers. However, amyloid PET and plasma p-tau217, along with age, were key variables independently associated with mean memory decline in models combining all predictors. Confidence intervals were narrow for estimates of population mean prediction, but person-level prediction intervals were wide. DISCUSSION: Plasma p-tau217 and amyloid PET provide useful information about predicting rates of future cognitive decline in cognitively unimpaired individuals at the population mean level, but not at the individual person level.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Positron-Emission Tomography , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/complications , Biomarkers , Memory Disorders/diagnostic imaging
8.
Alzheimers Dement ; 20(2): 1225-1238, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37963289

ABSTRACT

INTRODUCTION: The timing of plasma biomarker changes is not well understood. The goal of this study was to evaluate the temporal co-evolution of plasma and positron emission tomography (PET) Alzheimer's disease (AD) biomarkers. METHODS: We included 1408 Mayo Clinic Study of Aging and Alzheimer's Disease Research Center participants. An accelerated failure time (AFT) model was fit with amyloid beta (Aß) PET, tau PET, plasma p-tau217, p-tau181, and glial fibrillary acidic protein (GFAP) as endpoints. RESULTS: Individual timing of plasma p-tau progression was strongly associated with Aß PET and GFAP progression. In the population, GFAP became abnormal first, then Aß PET, plasma p-tau, and tau PET temporal meta-regions of interest when applying cut points based on young, cognitively unimpaired participants. DISCUSSION: Plasma p-tau is a stronger indicator of a temporally linked response to elevated brain Aß than of tau pathology. While Aß deposition and a rise in GFAP are upstream events associated with tau phosphorylation, the temporal link between p-tau and Aß PET was the strongest. HIGHLIGHTS: Plasma p-tau progression was more strongly associated with Aß than tau PET. Progression on plasma p-tau was associated with Aß PET and GFAP progression. P-tau181 and p-tau217 become abnormal after Aß PET and before tau PET. GFAP became abnormal first, before plasma p-tau and Aß PET.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Amyloid beta-Peptides , Alzheimer Disease/diagnostic imaging , Positron-Emission Tomography , Aging , Brain/diagnostic imaging , tau Proteins , Biomarkers
9.
Neurol Neurochir Pol ; 58(1): 8-20, 2024.
Article in English | MEDLINE | ID: mdl-38054275

ABSTRACT

This review makes the case that idiopathic normal pressure hydrocephalus (iNPH) is an outdated term because new information indicates that the syndrome is less idiopathic and that the cerebrospinal fluid (CSF) pressure of normal individuals is affected by several factors such as body mass index, age, and sex. Our review updates the epidemiology of iNPH and provides a clinical approach to the management of these patients. All the clinical features of iNPH are common in older individuals, and each has many causes, so the diagnosis is difficult. The first step in reaching an accurate diagnosis is to address the possible contributory factors to the gait abnormality and determine what if any role iNPH may be playing. The two best diagnostic tests are neuroimaging and cerebrospinal fluid (CSF) diversion (large volume lumbar puncture or external lumbar drainage) with pre/post gait evaluation. This review provides an update on the growing evidence that vascular disease, impaired CSF absorption, congenital, and genetic factors all contribute to the pathogenesis of iNPH. We suggest replacing the term iNPH with the term Hakim syndrome (HS) in acknowledgement of the first person to describe this syndrome. Lastly, we discuss the improvements in shunt technology and surgical techniques that have decreased the risks and long-term complications of shunt surgery.


Subject(s)
Hydrocephalus, Normal Pressure , Aged , Humans , Cerebrospinal Fluid Shunts/methods , Gait , Hydrocephalus, Normal Pressure/diagnostic imaging , Hydrocephalus, Normal Pressure/epidemiology , Neuroimaging , Syndrome , Male , Female
10.
AJNR Am J Neuroradiol ; 45(1): 72-75, 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38123913

ABSTRACT

BACKGROUND AND PURPOSE: The etiology of sporadic cavernous malformations is not well-understood. However, recent evidence suggests that they may arise from a developmental venous anomaly. The goal of this study was to evaluate the prevalence of developmental venous anomalies associated with sporadic cavernous malformations using 7T MR imaging. MATERIALS AND METHODS: We retrospectively identified patients with a sporadic cavernous malformation imaged with 7T MR imaging between August 2019 and July 2022. Two raters determined whether a developmental venous anomaly was associated with each malformation. RESULTS: The study included 59 patients with a total of 61 cavernous malformations. Of the sixty-one, 44 (72%) had an associated developmental venous anomaly. An associated anomaly was most common for cavernous malformations in the brainstem (88%) compared with the cerebral hemispheres or cerebellum (60%-67%). CONCLUSIONS: By means of high-quality 7T imaging, most patients with a sporadic cavernous malformation were found to have an associated developmental venous anomaly. These findings support the hypothesis that cavernous malformations may arise secondary to hemodynamic abnormalities.


Subject(s)
Central Nervous System Vascular Malformations , Hemangioma, Cavernous, Central Nervous System , Humans , Retrospective Studies , Prevalence , Magnetic Resonance Imaging/methods , Central Nervous System Vascular Malformations/complications , Hemangioma, Cavernous, Central Nervous System/epidemiology
11.
Neuroimage ; 280: 120357, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37661080

ABSTRACT

A sensitive and accurate imaging technique capable of tracking the disease progression of Alzheimer's Disease (AD) driven amnestic dementia would be beneficial. A currently available method for pathology detection in AD with high accuracy is Positron Emission Tomography (PET) imaging, despite certain limitations such as low spatial resolution, off-targeting error, and radiation exposure. Non-invasive MRI scanning with quantitative magnetic susceptibility measurements can be used as a complementary tool. To date, quantitative susceptibility mapping (QSM) has widely been used in tracking deep gray matter iron accumulation in AD. The present work proposes that by compartmentalizing quantitative susceptibility into paramagnetic and diamagnetic components, more holistic information about AD pathogenesis can be acquired. Particularly, diamagnetic component susceptibility (DCS) can be a powerful indicator for tracking protein accumulation in the gray matter (GM), demyelination in the white matter (WM), and relevant changes in the cerebrospinal fluid (CSF). In the current work, voxel-wise group analysis of the WM and the CSF regions show significantly lower |DCS| (the absolute value of DCS) value for amnestic dementia patients compared to healthy controls. Additionally, |DCS| and τ PET standardized uptake value ratio (SUVr) were found to be associated in several GM regions typically affected by τ deposition in AD. Therefore, we propose that the separated diamagnetic susceptibility can be used to track pathological neurodegeneration in different tissue types and regions of the brain. With the initial evidence, we believe the usage of compartmentalized susceptibility demonstrates substantive potential as an MRI-based technique for tracking AD-driven neurodegeneration.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Cerebral Cortex , Disease Progression , Gray Matter/diagnostic imaging
12.
Magn Reson Imaging ; 103: 109-118, 2023 11.
Article in English | MEDLINE | ID: mdl-37468020

ABSTRACT

Access to high-quality MR exams is severely limited for patients with some implanted devices due to labeled MR safety conditions, but small-bore systems can overcome this limitation. For example, a compact 3 T MR scanner (C3T) with high-performance gradients can acquire exams of the head, extremities, and infants. Because of its reduced bore size and the patient being advanced only partially into the bore, the associated electromagnetic (EM) fields drop off rapidly caudal to the head, compared to whole-body systems. Therefore, some patients with MR conditional implanted devices can safely receive 3 T brain exams on the C3T using its strong gradients and a multiple-channel receive coil, while a corresponding exam on whole-body MR is precluded. The purpose of this study is to evaluate the performance of a small-bore scanner for subjects with MR conditional spinal or sacral nerve stimulators, or abandoned cardiac implantable electronic device (CIED) leads. The spatial dependence of specific absorption rate (SAR) on the C3T was compared to whole-body scanners. A device assessment tool was developed and applied to evaluate MR safety individually on the C3T for 12 subjects with implanted devices or abandoned CIED leads. Once MR safety was established, the subjects received a C3T brain exam along with their clinical, 1.5 T exam. The resulting images were graded by three board-certified neuroradiologists. The C3T exams were well-tolerated with no adverse events, and significantly outperformed the whole-body 1.5 T exams in terms of overall image quality.


Subject(s)
Magnetic Resonance Imaging , Prostheses and Implants , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Heart , Head
13.
Neuroimage ; 276: 120199, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37269958

ABSTRACT

It is now widely known that research brain MRI, CT, and PET images may potentially be re-identified using face recognition, and this potential can be reduced by applying face-deidentification ("de-facing") software. However, for research MRI sequences beyond T1-weighted (T1-w) and T2-FLAIR structural images, the potential for re-identification and quantitative effects of de-facing are both unknown, and the effects of de-facing T2-FLAIR are also unknown. In this work we examine these questions (where applicable) for T1-w, T2-w, T2*-w, T2-FLAIR, diffusion MRI (dMRI), functional MRI (fMRI), and arterial spin labelling (ASL) sequences. Among current-generation, vendor-product research-grade sequences, we found that 3D T1-w, T2-w, and T2-FLAIR were highly re-identifiable (96-98%). 2D T2-FLAIR and 3D multi-echo GRE (ME-GRE) were also moderately re-identifiable (44-45%), and our derived T2* from ME-GRE (comparable to a typical 2D T2*) matched at only 10%. Finally, diffusion, functional and ASL images were each minimally re-identifiable (0-8%). Applying de-facing with mri_reface version 0.3 reduced successful re-identification to ≤8%, while differential effects on popular quantitative pipelines for cortical volumes and thickness, white matter hyperintensities (WMH), and quantitative susceptibility mapping (QSM) measurements were all either comparable with or smaller than scan-rescan estimates. Consequently, high-quality de-facing software can greatly reduce the risk of re-identification for identifiable MRI sequences with only negligible effects on automated intracranial measurements. The current-generation echo-planar and spiral sequences (dMRI, fMRI, and ASL) each had minimal match rates, suggesting that they have a low risk of re-identification and can be shared without de-facing, but this conclusion should be re-evaluated if they are acquired without fat suppression, with a full-face scan coverage, or if newer developments reduce the current levels of artifacts and distortion around the face.


Subject(s)
Diffusion Magnetic Resonance Imaging , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Neuroimaging , Artifacts , Spin Labels
14.
Nat Commun ; 14(1): 3097, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37248223

ABSTRACT

Whether a relationship exists between cerebrovascular disease and Alzheimer's disease has been a source of controversy. Evaluation of the temporal progression of imaging biomarkers of these disease processes may inform mechanistic associations. We investigate the relationship of disease trajectories of cerebrovascular disease (white matter hyperintensity, WMH, and fractional anisotropy, FA) and Alzheimer's disease (amyloid and tau PET) biomarkers in 2406 Mayo Clinic Study of Aging and Mayo Alzheimer's Disease Research Center participants using accelerated failure time models. The model assumes a common pattern of progression for each biomarker that is shifted earlier or later in time for each individual and represented by a per participant age adjustment. An individual's amyloid and tau PET adjustments show very weak temporal association with WMH and FA adjustments (R = -0.07 to 0.07); early/late amyloid or tau timing explains <1% of the variation in WMH and FA adjustment. Earlier onset of amyloid is associated with earlier onset of tau (R = 0.57, R2 = 32%). These findings support a strong mechanistic relationship between amyloid and tau aggregation, but not between WMH or FA and amyloid or tau PET.


Subject(s)
Alzheimer Disease , Cerebrovascular Disorders , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/complications , tau Proteins , Amyloid beta-Peptides , Magnetic Resonance Imaging , Cognitive Dysfunction/complications , Cerebrovascular Disorders/diagnostic imaging , Positron-Emission Tomography , Amyloid , Biomarkers
15.
Acta Radiol ; 64(4): 1615-1622, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37023028

ABSTRACT

BACKGROUND: Phase-contrast cine magnetic resonance imaging (PC-MRI) has been used to measure cerebrospinal fluid (CSF) flow dynamics, but the influence of the area of the aqueduct and region of interest (ROI) on quantification of stroke volume (SV) has not been assessed. PURPOSE: To assess the influence of the area of the ROI in quantifying the aqueductal SV measured with PC-MRI within the cerebral aqueduct. MATERIAL AND METHODS: Nine healthy volunteers (mean age = 29.6 years) were enrolled in the study, and brain MRI examinations were performed on a 3.0-T system. Quantitative analysis of the aqueductal CSF flow was performed using manual ROI placement. ROIs were separately drawn for each of the 12 phases of the cardiac cycle, and changes in aqueduct size during the cardiac cycle were determined. The SV was calculated using 12 different aqueductal ROIs and compared with the SV calculated using a fixed ROI size. RESULTS: There was variation in the size of the aqueduct during the cardiac cycle. In addition, the measured SV increased with a greater area of the ROI. A significant difference in the calculated SVs with the 12 variable ROIs was observed compared with that using a fixed ROI throughout the cardiac cycle. CONCLUSION: To establish reliable reference values for the SV in future studies, a variable ROI should be considered.


Subject(s)
Cerebral Aqueduct , Magnetic Resonance Imaging, Cine , Humans , Adult , Cerebral Aqueduct/diagnostic imaging , Magnetic Resonance Imaging, Cine/methods , Stroke Volume , Healthy Volunteers , Magnetic Resonance Imaging/methods , Cerebrospinal Fluid
16.
Neuroimage ; 273: 120068, 2023 06.
Article in English | MEDLINE | ID: mdl-37003447

ABSTRACT

Quantitative susceptibility mapping (QSM) has been used to study susceptibility changes that may occur based on tissue composition and mineral deposition. Iron is a primary contributor to changes in magnetic susceptibility and of particular interest in applications of QSM to neurodegeneration and aging. Iron can contribute to neurodegeneration through inflammatory processes and via interaction with aggregation of disease-related proteins. To better understand the local susceptibility changes observed on QSM, its signal has been studied in association with other imaging metrics such as positron emission tomography (PET). The associations of QSM and PET may provide insight into the pathophysiology of disease processes, such as the role of iron in aging and neurodegeneration, and help to determine the diagnostic utility of QSM as an indirect indicator of disease processes typically evaluated with PET. In this review we discuss the proposed mechanisms and summarize prior studies of the associations of QSM and amyloid PET, tau PET, TSPO PET, FDG-PET, 15O-PET, and F-DOPA PET in evaluation of neurologic diseases with a focus on aging and neurodegeneration.


Subject(s)
Aging , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Iron/metabolism , Brain/diagnostic imaging , Brain/metabolism , Receptors, GABA/metabolism
17.
Neurosurg Focus ; 54(4): E6, 2023 04.
Article in English | MEDLINE | ID: mdl-37004136

ABSTRACT

OBJECTIVE: Idiopathic normal pressure hydrocephalus (iNPH) results in significant morbidity in the elderly with symptoms of dementia, gait instability, and urinary incontinence. In well-selected patients, ventriculoperitoneal shunt (VPS) placement often results in clinical improvement. Most postshunt assessments of patients rely on subjective scales. The goal of this study was to assess the utility of remote activity monitoring to provide objective evidence of gait improvement following VPS placement for iNPH. METHODS: Patients with iNPH were prospectively enrolled and fitted with 5 activity monitors (on the hip and bilateral thighs and ankles) that they wore for 4 days preoperatively within 30 days of surgery and for 4 days within 30 days postoperatively. Monitors collected continuous data for number of steps, cadence, body position (upright, prone, supine, and lateral decubitus), gait entropy, and the proportion of each day spent active or static. Data were retrieved from the devices and a comparison of pre- and postoperative movement assessment was performed. The gait data were also correlated with formal clinical gait assessments before and after lumbar puncture and with motion analysis laboratory testing at baseline and 1 month and 1 year after VPS placement. RESULTS: Twenty patients fulfilled the inclusion and exclusion criteria (median age 76 years). The baseline median number of daily steps was 1929, the median percentage of the day spent inactive was 70%, the median percentage of the day with a static posture was 95%, the median gait velocity was 0.49 m/sec, and the median number of steps required to turn was 8. There was objective improvement in median entropy from pre- to postoperatively, increasing from 0.6 to 0.8 (p = 0.002). There were no statistically significant differences for any of the remaining variables measured by the activity monitors when comparing the preoperative to the 1-month postoperative time point. All variables from motion analysis testing showed statistically significant differences or a trend toward significance at 1 year after VPS placement. Among the significantly correlated variables at baseline, cadence was inversely correlated with percentage of gait cycle spent in the support phase (contact with ground vs swing phase). CONCLUSIONS: This pilot study suggests that activity monitoring provides an early objective measure of improvement in gait entropy after VPS placement among patients with iNPH, although a more significant improvement was noted on the detailed clinical gait assessments. Further long-term studies are needed to determine the utility of remote monitoring for assessing gait improvement following VPS placement.


Subject(s)
Hydrocephalus, Normal Pressure , Ventriculoperitoneal Shunt , Humans , Aged , Ventriculoperitoneal Shunt/methods , Hydrocephalus, Normal Pressure/surgery , Hydrocephalus, Normal Pressure/diagnosis , Pilot Projects , Treatment Outcome , Longitudinal Studies
18.
Neuroradiol J ; 36(6): 665-673, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37118867

ABSTRACT

BACKGROUND AND PURPOSE: : Post-shunt MRI is usually performed at 1.5T under the general assumption that shunt-related susceptibility artifacts would be greater at higher field strengths. PURPOSE: The purpose is to show that imaging post-shunt idiopathic normal pressure hydrocephalus (iNPH) patients at 3T is feasible and with reduced artifacts as compared to 1.5T. METHODS: We manually measured transverse dimensions of artifact at the levels of lateral ventricles, cerebral aqueduct, and cerebellar hemisphere. Areas/volumes of artifacts were calculated assuming an elliptic/ellipsoid shape. Relative extent of shunt-related artifact between field strengths was rated by 3 readers on a 5-point Likert scale. A Wilcoxon Signed Rank Test was used to compare artifact at 1.5T vs 3T for each sequence, with a significance level set at p < 0.05. RESULTS: Artifact areas were calculated in 22 iNPH patients; artifacts were on average smaller at 3T vs 1.5T on MPRAGE, DWI, and GRE sequences. On T2 FLAIR and T2 FSE, artifacts at 3T were larger than 1.5T. On the qualitative analysis, artifact effects were less at 3T vs 1.5T on DWI, greater at 3T on T2 FSE, and had mixed results on GRE. CONCLUSION: Our results indicate feasibility of post-shunt imaging with the CERTAS Plus valve at 3T based on shunt-related artifact that is less than or equal in extent to that on 1.5T on most standard clinical imaging sequences. Our findings, corroborated by the qualitative image review, suggest that dedicated clinical imaging sequences for devices may allow for reduction in artifact extent at both 1.5T and 3T.


Subject(s)
Artifacts , Hydrocephalus, Normal Pressure , Humans , Hydrocephalus, Normal Pressure/diagnostic imaging , Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/methods
19.
Turk Neurosurg ; 33(3): 471-476, 2023.
Article in English | MEDLINE | ID: mdl-36951031

ABSTRACT

AIM: To measure the baseline spinopelvic parameters and characterize the sagittal, and coronal plane deformities in patients with idiopathic normal pressure hydrocephalus (iNPH). MATERIAL AND METHODS: We analyzed a series of patients at one academic institution who underwent ventriculoperitoneal shunting for iNPH with pre-shunt standing full length x-rays. The series of patients was enrolled consecutively to minimize selection bias. We quantified comorbid sagittal plane spinal deformity based on the Scoliosis Research Society-Schwab classification system by assessing pelvic incidence and lumbar lordosis mismatch (PI-LL), pelvic tilt (PT), and sagittal vertical axis (SVA). RESULTS: Seventeen patients (59% male) were included in this study. Mean (± standard deviation) age was 74 ± 5.3 years with a body mass index (BMI) of 30 ± 4.5 kg/m < sup > 2< sup > . Six patients (35%) had marked sagittal plane spinal deformity by at least one parameter: five (29%) had greater than 20˚ PI-LL mismatch, three (18%) had > 9.5 cm SVA, and one (6%) had PT greater than 30˚. Additionally, the thoracic kyphosis exceeded the lumbar lordosis in nine patients (53%). CONCLUSION: Positive sagittal balance, with thoracic kyphosis exceeding lumbar lordosis, is common in iNPH patients. This may lead to postural instability, especially in patients whose gait does not improve following shunting. These patients may warrant further investigation and workup, including full length standing x-rays. Future studies should assess for improvement in the sagittal plane parameters following shunt placement.


Subject(s)
Hydrocephalus, Normal Pressure , Spine , Aged , Female , Humans , Male , Kyphosis , Lordosis , Lumbar Vertebrae , Quality of Life , Retrospective Studies , Scoliosis , Spine/abnormalities
20.
Brain ; 146(5): 2029-2044, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36789483

ABSTRACT

Staging the severity of Alzheimer's disease pathology using biomarkers is useful for therapeutic trials and clinical prognosis. Disease staging with amyloid and tau PET has face validity; however, this would be more practical with plasma biomarkers. Our objectives were, first, to examine approaches for staging amyloid and tau PET and, second, to examine prediction of amyloid and tau PET stages using plasma biomarkers. Participants (n = 1136) were enrolled in either the Mayo Clinic Study of Aging or the Alzheimer's Disease Research Center; had a concurrent amyloid PET, tau PET and blood draw; and met clinical criteria for cognitively unimpaired (n = 864), mild cognitive impairment (n = 148) or Alzheimer's clinical syndrome with dementia (n = 124). The latter two groups were combined into a cognitively impaired group (n = 272). We used multinomial regression models to estimate discrimination [concordance (C) statistics] among three amyloid PET stages (low, intermediate, high), four tau PET stages (Braak 0, 1-2, 3-4, 5-6) and a combined amyloid and tau PET stage (none/low versus intermediate/high severity) using plasma biomarkers as predictors separately within unimpaired and impaired individuals. Plasma analytes, p-tau181, Aß1-42 and Aß1-40 (analysed as the Aß42/Aß40 ratio), glial fibrillary acidic protein and neurofilament light chain were measured on the HD-X Simoa Quanterix platform. Plasma p-tau217 was also measured in a subset (n = 355) of cognitively unimpaired participants using the Lilly Meso Scale Discovery assay. Models with all Quanterix plasma analytes along with risk factors (age, sex and APOE) most often provided the best discrimination among amyloid PET stages (C = 0.78-0.82). Models with p-tau181 provided similar discrimination of tau PET stages to models with all four plasma analytes (C = 0.72-0.85 versus C = 0.73-0.86). Discriminating a PET proxy of intermediate/high from none/low Alzheimer's disease neuropathological change with all four Quanterix plasma analytes was excellent but not better than p-tau181 only (C = 0.88 versus 0.87 for unimpaired and C = 0.91 versus 0.90 for impaired). Lilly p-tau217 outperformed the Quanterix p-tau181 assay for discriminating high versus intermediate amyloid (C = 0.85 versus 0.74) but did not improve over a model with all Quanterix plasma analytes and risk factors (C = 0.85 versus 0.83). Plasma analytes along with risk factors can discriminate between amyloid and tau PET stages and between a PET surrogate for intermediate/high versus none/low neuropathological change with accuracy in the acceptable to excellent range. Combinations of plasma analytes are better than single analytes for many staging predictions with the exception that Quanterix p-tau181 alone usually performed equivalently to combinations of Quanterix analytes for tau PET discrimination.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Amyloidogenic Proteins , Biomarkers , Aging , tau Proteins , Amyloid beta-Peptides
SELECTION OF CITATIONS
SEARCH DETAIL
...