Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 22, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013148

ABSTRACT

Activation of the sympathetic nervous system causes pronounced metabolic changes that are mediated by multiple adrenergic receptor subtypes. Systemic treatment with ß2-adrenergic receptor agonists results in multiple beneficial metabolic effects, including improved glucose homeostasis. To elucidate the underlying cellular and molecular mechanisms, we chronically treated wild-type mice and several newly developed mutant mouse strains with clenbuterol, a selective ß2-adrenergic receptor agonist. Clenbuterol administration caused pronounced improvements in glucose homeostasis and prevented the metabolic deficits in mouse models of ß-cell dysfunction and insulin resistance. Studies with skeletal muscle-specific mutant mice demonstrated that these metabolic improvements required activation of skeletal muscle ß2-adrenergic receptors and the stimulatory G protein, Gs. Unbiased transcriptomic and metabolomic analyses showed that chronic ß2-adrenergic receptor stimulation caused metabolic reprogramming of skeletal muscle characterized by enhanced glucose utilization. These findings strongly suggest that agents targeting skeletal muscle metabolism by modulating ß2-adrenergic receptor-dependent signaling pathways may prove beneficial as antidiabetic drugs.


Subject(s)
Cellular Reprogramming/drug effects , Clenbuterol/pharmacology , Hypoglycemic Agents/pharmacology , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Animals , Biochemical Phenomena , Clenbuterol/metabolism , Female , Glucose/metabolism , Homeostasis , Insulin Resistance , Male , Metabolic Diseases , Metabolomics , Mice , Mice, Knockout , Receptors, Adrenergic, beta-2/metabolism , Signal Transduction
2.
Nat Immunol ; 20(2): 141-151, 2019 02.
Article in English | MEDLINE | ID: mdl-30643265

ABSTRACT

Rheumatoid arthritis is characterized by progressive joint inflammation and affects ~1% of the human population. We noted single-nucleotide polymorphisms (SNPs) in the apoptotic cell-engulfment genes ELMO1, DOCK2, and RAC1 linked to rheumatoid arthritis. As ELMO1 promotes cytoskeletal reorganization during engulfment, we hypothesized that ELMO1 loss would worsen inflammatory arthritis. Surprisingly, Elmo1-deficient mice showed reduced joint inflammation in acute and chronic arthritis models. Genetic and cell-biology studies revealed that ELMO1 associates with receptors linked to neutrophil function in arthritis and regulates activation and early neutrophil recruitment to the joints, without general inhibition of inflammatory responses. Further, neutrophils from the peripheral blood of human donors that carry the SNP in ELMO1 associated with arthritis display increased migratory capacity, whereas ELMO1 knockdown reduces human neutrophil migration to chemokines linked to arthritis. These data identify 'noncanonical' roles for ELMO1 as an important cytoplasmic regulator of specific neutrophil receptors and promoter of arthritis.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Arthritis, Experimental/immunology , Arthritis, Rheumatoid/immunology , Neutrophils/immunology , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis/immunology , Arthritis, Experimental/diagnosis , Arthritis, Experimental/genetics , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/pathology , Chemotaxis/genetics , Chemotaxis/immunology , Collagen/immunology , Complement C5a/immunology , Complement C5a/metabolism , Cytoplasm/immunology , Cytoplasm/metabolism , Disease Models, Animal , Female , Gene Expression Profiling , Healthy Volunteers , Humans , Intravital Microscopy , Joints/cytology , Joints/immunology , Leukotriene B4/immunology , Leukotriene B4/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/metabolism , Polymorphism, Single Nucleotide , Proteomics , Severity of Illness Index , Signal Transduction/immunology , Time-Lapse Imaging
3.
J Clin Invest ; 128(2): 746-759, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29337301

ABSTRACT

An increase in hepatic glucose production (HGP) is a key feature of type 2 diabetes. Excessive signaling through hepatic Gs-linked glucagon receptors critically contributes to pathologically elevated HGP. Here, we tested the hypothesis that this metabolic impairment can be counteracted by enhancing hepatic Gi signaling. Specifically, we used a chemogenetic approach to selectively activate Gi-type G proteins in mouse hepatocytes in vivo. Unexpectedly, activation of hepatic Gi signaling triggered a pronounced increase in HGP and severely impaired glucose homeostasis. Moreover, increased Gi signaling stimulated glucose release in human hepatocytes. A lack of functional Gi-type G proteins in hepatocytes reduced blood glucose levels and protected mice against the metabolic deficits caused by the consumption of a high-fat diet. Additionally, we delineated a signaling cascade that links hepatic Gi signaling to ROS production, JNK activation, and a subsequent increase in HGP. Taken together, our data support the concept that drugs able to block hepatic Gi-coupled GPCRs may prove beneficial as antidiabetic drugs.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Glucose/metabolism , Liver/metabolism , Animals , Blood Glucose/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Gene Expression Profiling , Glucagon/metabolism , Gluconeogenesis , Hepatocytes/cytology , Hepatocytes/metabolism , Homeostasis , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxygen/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Reactive Oxygen Species/metabolism , Receptors, Glucagon/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...