Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 9(6): 1809-19, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20515953

ABSTRACT

Elevated expression of insulin-like growth factor-II (IGF-II) is frequently observed in a variety of human malignancies, including breast, colon, and liver cancer. As IGF-II can deliver a mitogenic signal through both IGF-IR and an alternately spliced form of the insulin receptor (IR-A), neutralizing the biological activity of this growth factor directly is a potential alternative option to IGF-IR-directed agents. Using a Fab-displaying phage library and a biotinylated precursor form of IGF-II (1-104 amino acids) as a target, we isolated Fabs specific for the E-domain COOH-terminal extension form of IGF-II and for mature IGF-II. One of these Fabs that bound to both forms of IGF-II was reformatted into a full-length IgG, expressed, purified, and subjected to further analysis. This antibody (DX-2647) displayed a very high affinity for IGF-II/IGF-IIE (K(D) value of 49 and 10 pmol/L, respectively) compared with IGF-I (approximately 10 nmol/L) and blocked binding of IGF-II to IGF-IR, IR-A, a panel of insulin-like growth factor-binding proteins, and the mannose-6-phosphate receptor. A crystal complex of the parental Fab of DX-2647 bound to IGF-II was resolved to 2.2 A. DX-2647 inhibited IGF-II and, to a lesser extent, IGF-I-induced receptor tyrosine phosphorylation, cellular proliferation, and both anchorage-dependent and anchorage-independent colony formation in various cell lines. In addition, DX-2647 slowed tumor progression in the Hep3B xenograft model, causing decreased tumoral CD31 staining as well as reduced IGF-IIE and IGF-IR phosphorylation levels. Therefore, DX-2647 offers an alternative approach to targeting IGF-IR, blocking IGF-II signaling through both IGF-IR and IR-A.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Insulin-Like Growth Factor II/immunology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Animals , Antibodies, Monoclonal/pharmacology , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Progression , Humans , Immunohistochemistry , Mice , Signal Transduction/drug effects , Tumor Stem Cell Assay , Xenograft Model Antitumor Assays
2.
Article in English | MEDLINE | ID: mdl-19724140

ABSTRACT

Elevated expression of insulin-like growth factor II (IGF-II) is frequently observed in a variety of human malignancies, including breast, colon and liver cancer. As IGF-II can deliver a mitogenic signal through both the type 1 insulin-like growth factor receptor (IGF-IR) and an alternately spliced form of the insulin receptor (IR-A), neutralizing the biological activity of this growth factor directly is an attractive therapeutic option. One method of doing this would be to find antibodies that bind tightly and specifically to the peptide, which could be used as protein therapeutics to lower the peptide levels in vivo and/or to block the peptide from binding to the IGF-IR or IR-A. To address this, Fabs were selected from a phage-display library using a biotinylated precursor form of the growth factor known as IGF-IIE as a target. Fabs were isolated that were specific for the E-domain C-terminal extension and for mature IGF-II. Four Fabs selected from the library were produced, complexed with IGF-II and set up in crystallization trials. One of the Fab-IGF-II complexes (M64-F02-IGF-II) crystallized readily, yielding crystals that diffracted to 2.2 A resolution and belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 50.7, b = 106.9, c = 110.7 A. There was one molecule of the complete complex in the asymmetric unit. The same Fab was also crystallized with a longer form of the growth factor, IGF-IIE. This complex crystallized in space group P2(1)2(1)2(1), with unit-cell parameters a = 50.7, b = 107, c = 111.5 A, and also diffracted X-rays to 2.2 A resolution.


Subject(s)
Immunoglobulin Fab Fragments/chemistry , Insulin-Like Growth Factor II/chemistry , Crystallization , Crystallography, X-Ray , Glycosylation , Humans , Protein Isoforms/chemistry
3.
Proc Natl Acad Sci U S A ; 103(38): 13991-6, 2006 Sep 19.
Article in English | MEDLINE | ID: mdl-16963559

ABSTRACT

Affinity of integrin lymphocyte function-associated antigen 1 (LFA-1) is enhanced by conformational changes from the low-affinity closed form to the high-affinity (HA) open form of the ligand-binding inserted (I) domain as shown by work with purified I domains. However, affinity up-regulation of LFA-1 on the cell surface by physiological agonists such as chemokines has yet to be demonstrated by monovalent reagents. We characterize a mAb, AL-57 (activated LFA-1 clone 57), that has been developed by phage display that selectively targets the HA open conformation of the LFA-1 I domain. AL-57 discriminates among low-affinity, intermediate-affinity, and HA states of LFA-1. Furthermore, AL-57 functions as a ligand mimetic that binds only upon activation and requires Mg2+ for binding. Compared with the natural ligand intercellular adhesion molecule-1, AL-57 shows a tighter binding to the open I domain and a 250-fold slower off rate. Monovalent Fab AL-57 demonstrates affinity increases on a subset (approximately 10%) of lymphocyte cell surface LFA-1 molecules upon stimulation with CXCL-12 (CXC chemokine ligand 12). Affinity up-regulation correlates with global conformational changes of LFA-1 to the extended form. Affinity increase stimulated by CXCL-12 is transient and peaks 2 to 5 min after stimulation.


Subject(s)
Antibodies, Monoclonal/metabolism , Antibody Affinity , Chemokines, CXC/metabolism , Lymphocyte Function-Associated Antigen-1/metabolism , Lymphocytes/metabolism , Amino Acid Sequence , Animals , Antibodies, Monoclonal/genetics , Binding Sites , Cell Line , Chemokine CXCL12 , Epitopes , Humans , Ligands , Lymphocyte Function-Associated Antigen-1/chemistry , Lymphocyte Function-Associated Antigen-1/genetics , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Surface Plasmon Resonance , Up-Regulation
4.
J Leukoc Biol ; 80(4): 905-14, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16888085

ABSTRACT

LFA-1 (alpha(L)beta(2)) mediates cell-cell and cell-extracellular matrix adhesions essential for immune and inflammatory responses. One critical mechanism regulating LFA-1 activity is the conformational change of the ligand-binding alpha(L) I domain from low-affinity (LA), closed form, to the high-affinity (HA), open form. Most known integrin antagonists bind both forms. Antagonists specific for the HA alpha(L) I domain have not been described. Here, we report the identification and characterization of a human antibody AL-57, which binds to the alpha(L) I domain in a HA but not LA conformation. AL-57 was discovered by selection from a human Fab-displaying library using a locked-open HA I domain as target. AL-57 Fab-phage bound HA I domain-expressing K562 cells (HA cells) in a Mg(2+)-dependent manner. AL-57 IgG also bound HA cells and PBMCs, activated by Mg(2+)/EGTA, PMA, or DTT. The binding profile of AL-57 IgG on PBMCs was the same as that of ICAM-1, the main ligand of LFA-1. In contrast, an anti-alpha(L) murine mAb MHM24 did not distinguish between the HA and LA forms. Moreover, AL-57 IgG blocked ICAM-1 binding to HA cells with a potency greater than MHM24. It also inhibited ICAM-1 binding to PBMCs, blocked adhesion of HA cells to keratinocytes, and inhibited PHA-induced lymphocyte proliferation with potencies comparable with MHM24. These results indicate that specifically targeting the HA I domain is sufficient to inhibit LFA-1-mediated, adhesive functions. AL-57 represents a therapeutic candidate for treatment of inflammatory and autoimmune diseases.


Subject(s)
Antibodies, Monoclonal/pharmacology , Leukocytes, Mononuclear/drug effects , Lymphocyte Function-Associated Antigen-1/drug effects , Antibodies, Monoclonal/chemistry , Antigen-Antibody Reactions , Binding Sites , Cell Adhesion/drug effects , Cell Line , Cell Proliferation/drug effects , Humans , Immunoglobulin G/pharmacology , Intercellular Adhesion Molecule-1/drug effects , Keratinocytes/drug effects , Lymphocyte Function-Associated Antigen-1/immunology , Molecular Sequence Data , Phytohemagglutinins/antagonists & inhibitors , Phytohemagglutinins/pharmacology , Structure-Activity Relationship
5.
Nucleic Acids Res ; 33(9): e81, 2005 May 19.
Article in English | MEDLINE | ID: mdl-15905471

ABSTRACT

The use of oligonucleotide-assisted cleavage and ligation (ONCL), a novel approach to the capture of gene repertoires, in the construction of a phage-display immune antibody library is described. ONCL begins with rapid amplification of cDNA ends to amplify all members equally. A single, specific cut near 5' and/or 3' end of each gene fragment (in single stranded form) is facilitated by hybridization with an appropriate oligonucleotide adapter. Directional cloning of targeted DNA is accomplished by ligation of a partially duplex DNA molecule (containing suitable restriction sites) and amplification with primers in constant regions. To demonstrate utility and reliability of ONCL, a human antibody repertoire was cloned from IgG mRNA extracted from human B-lymphocytes engrafted in Trimera mice. These mice were transplanted with peripheral blood lymphocytes from Candida albicans infected individuals and subsequently immunized with C.albicans glyceraldehyde-3-phosphate dehydrogenase (GAPDH). DNA sequencing showed that ONCL resulted in efficient capture of gene repertoires. Indeed, full representation of all V(H) families/segments was observed showing that ONCL did not introduce cloning biases for or against any V(H) family. We validated the efficiency of ONCL by creating a functional Fab phage-display library with a size of 3.3 x 10(10) and by selecting five unique Fabs against GAPDH antigen.


Subject(s)
Cloning, Molecular/methods , DNA, Complementary , Genes, Immunoglobulin , Oligonucleotides/chemistry , Peptide Library , Adolescent , Adult , Animals , Antibodies, Monoclonal/immunology , Antibody Specificity , Biotechnology/methods , Candida albicans/enzymology , Candida albicans/immunology , Female , Glyceraldehyde-3-Phosphate Dehydrogenases/immunology , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/genetics , Mice , Mice, Inbred BALB C , Middle Aged , Oligonucleotides/metabolism , Polymerase Chain Reaction , Sequence Analysis, DNA
6.
Nat Biotechnol ; 23(3): 344-8, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15723048

ABSTRACT

Combinatorial libraries of rearranged hypervariable V(H) and V(L) sequences from nonimmunized human donors contain antigen specificities, including anti-self reactivities, created by random pairing of V(H)s and V(L)s. Somatic hypermutation of immunoglobulin genes, however, is critical in the generation of high-affinity antibodies in vivo and occurs only after immunization. Thus, in combinatorial phage display libraries from nonimmunized donors, high-affinity antibodies are rarely found. Lengthy in vitro affinity maturation is often needed to improve antibodies from such libraries. We report the construction of human Fab libraries having a unique combination of immunoglobulin sequences captured from human donors and synthetic diversity in key antigen contact sites in heavy-chain complementarity-determining regions 1 and 2. The success of this strategy is demonstrated by identifying many monovalent Fabs against multiple therapeutic targets that show higher affinities than approved therapeutic antibodies. This very often circumvents the need for affinity maturation, accelerating discovery of antibody drug candidates.


Subject(s)
Antibody Affinity , Antibody Formation , Complementarity Determining Regions/genetics , Immunoglobulin Fab Fragments/biosynthesis , Immunoglobulin Fab Fragments/immunology , Peptide Library , Protein Engineering/methods , Genetic Variation/genetics , Humans , Immunoglobulin Fab Fragments/genetics , Protein Binding , Recombination, Genetic/genetics , Tissue Donors
7.
Biotechnol Prog ; 18(2): 182-92, 2002.
Article in English | MEDLINE | ID: mdl-11934284

ABSTRACT

Several phage isolates that bind specifically to human serum albumin (HSA) were isolated from disulfide-constrained cyclic peptide phage-display libraries. The majority of corresponding synthetic peptides bind with micromolar affinity to HSA in low salt at pH 6.2, as determined by fluorescence anisotropy. One of the highest affinity peptides, DX-236, also bound well to several mammalian serum albumins (SA). Immobilized DX-236 quantitatively captures HSA from human serum; mild conditions (100 mM Tris, pH 9.1) allow release of HSA. The DX-236 affinity column bound HSA from human serum with a greater specificity than does Cibacron Blue agarose beads. In addition to its likely utility in HSA and other mammalian SA purifications, this peptide media may be useful in the proteomics and medical research markets for selective removal of mammalian albumin from serum prior to mass spectrometric and other analyses.


Subject(s)
Bacteriophage M13/metabolism , Chromatography, Affinity/methods , Peptides/metabolism , Serum Albumin/isolation & purification , Serum Albumin/metabolism , Amino Acid Sequence , Bacteriophage M13/genetics , Enzyme-Linked Immunosorbent Assay , Fluorescence Polarization/methods , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Peptide Library , Peptides/genetics , Protein Binding , Sensitivity and Specificity , Serum Albumin/genetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...