Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38794067

ABSTRACT

In response to a burgeoning pediatric mental health epidemic, recent guidelines have instructed pediatricians to regularly screen their patients for mental health disorders with consistency and standardization. Yet, gold-standard screening surveys to evaluate mental health problems in children typically rely solely on reports given by caregivers, who tend to unintentionally under-report, and in some cases over-report, child symptomology. Digital phenotype screening tools (DPSTs), currently being developed in research settings, may help overcome reporting bias by providing objective measures of physiology and behavior to supplement child mental health screening. Prior to their implementation in pediatric practice, however, the ethical dimensions of DPSTs should be explored. Herein, we consider some promises and challenges of DPSTs under three broad categories: accuracy and bias, privacy, and accessibility and implementation. We find that DPSTs have demonstrated accuracy, may eliminate concerns regarding under- and over-reporting, and may be more accessible than gold-standard surveys. However, we also find that if DPSTs are not responsibly developed and deployed, they may be biased, raise privacy concerns, and be cost-prohibitive. To counteract these potential shortcomings, we identify ways to support the responsible and ethical development of DPSTs for clinical practice to improve mental health screening in children.


Subject(s)
Mental Disorders , Mental Health , Wearable Electronic Devices , Humans , Wearable Electronic Devices/ethics , Child , Mental Disorders/diagnosis , Mass Screening/ethics , Mass Screening/instrumentation , Privacy
2.
Article in English | MEDLINE | ID: mdl-38373134

ABSTRACT

Postural instability is associated with disease status and fall risk in Persons with Multiple Sclerosis (PwMS). However, assessments of postural instability, known as postural sway, leverage force platforms or wearable accelerometers, and are most often conducted in laboratory environments and are thus not broadly accessible. Remote measures of postural sway captured during daily life may provide a more accessible alterative, but their ability to capture disease status and fall risk has not yet been established. We explored the utility of remote measures of postural sway in a sample of 33 PwMS. Remote measures of sway differed significantly from lab-based measures, but still demonstrated moderately strong associations with patient-reported measures of balance and mobility impairment. Machine learning models for predicting fall risk trained on lab data provided an Area Under Curve (AUC) of 0.79, while remote data only achieved an AUC of 0.51. Remote model performance improved to an AUC of 0.74 after a new, subject-specific k-means clustering approach was applied for identifying the remote data most appropriate for modelling. This cluster-based approach for analyzing remote data also strengthened associations with patient-reported measures, increasing their strength above those observed in the lab. This work introduces a new framework for analyzing data from remote patient monitoring technologies and demonstrates the promise of remote postural sway assessment for assessing fall risk and characterizing balance impairment in PwMS.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/diagnosis , Postural Balance , Machine Learning
3.
Article in English | MEDLINE | ID: mdl-37067975

ABSTRACT

Typical assessments of balance impairment are subjective or require data from cumbersome and expensive force platforms. Researchers have utilized lower back (sacrum) accelerometers to enable more accessible, objective measurement of postural sway for use in balance assessment. However, new sensor patches are broadly being deployed on the chest for cardiac monitoring, opening a need to determine if measurements from these devices can similarly inform balance assessment. Our aim in this work is to validate postural sway measurements from a chest accelerometer. To establish concurrent validity, we considered data from 16 persons with multiple sclerosis (PwMS) asked to stand on a force platform while also wearing sensor patches on the sacrum and chest. We found five of 15 postural sway features derived from the chest and sacrum were significantly correlated with force platform-derived features, which is in line with prior sacrum-derived findings. Clinical significance was established using a sample of 39 PwMS who performed eyes-open, eyes-closed, and tandem standing tasks. This cohort was stratified by fall status and completed several patient-reported measures (PRM) of balance and mobility impairment. We also compared sway features derived from a single 30-second period to those derived from a one-minute period with a sliding window to create individualized distributions of each postural sway feature (ID method). We find traditional computation of sway features from the chest is sensitive to changes in PRMs and task differences. Distribution characteristics from the ID method establish additional relationships with PRMs, detect differences in more tasks, and distinguish between fall status groups. Overall, the chest was found to be a valid location to monitor postural sway and we recommend utilizing the ID method over single-observation analyses.


Subject(s)
Multiple Sclerosis , Wearable Electronic Devices , Humans , Multiple Sclerosis/diagnosis , Postural Balance , Biomechanical Phenomena , Posture
SELECTION OF CITATIONS
SEARCH DETAIL