Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
FEBS J ; 291(3): 458-476, 2024 02.
Article in English | MEDLINE | ID: mdl-37997026

ABSTRACT

CC and CXC chemokines are distinct chemokine subfamilies. CC chemokines usually do not bind CXC-chemokine receptors and vice versa. CCR5 and CXCR4 receptors are activated by CCL5 and CXCL12 chemokines, respectively, and are also used as HIV-1 coreceptors. CCL5 contains one conserved binding site for a sulfated tyrosine residue, whereas CXCL12 is unique in having two additional sites for sulfated/nonsulfated tyrosine residues. In this study, N-terminal (Nt) CXCR4 peptides were found to bind CCL5 with somewhat higher affinities in comparison to those of short Nt-CCR5(8-20) peptides with the same number of sulfated tyrosine residues. Similarly, a long Nt-CCR5(1-27)(s Y3,s Y10,s Y14) peptide cross reacts with CXCL12 and with lower KD in comparison to its binding to CCL5. Intermolecular nuclear overhauser effect (NOE) measurements were used to decipher the mechanism of the chemokine/Nt-receptor peptide binding. The Nt-CXCR4 peptides interact with the conserved CCL5 tyrosine sulfate-binding site by an allovalency mechanism like that observed for CCL5 binding of Nt-CCR5 peptides. Nt-CCR5 peptides bind CXCL12 in multiple modes analogous to their binding to HIV-1 gp120 and interact with all three tyrosine/sulfated tyrosine-binding pockets of CXCL12. We suggest that the chemokine-receptors Nt-segments bind promiscuously to cognate and non-cognate chemokines and in a mechanism that is dependent on the number of binding pockets for tyrosine residues found on the chemokine. In conclusion, common features shared among the chemokine-receptors' Nt-segments such as multiple tyrosine residues that are potentially sulfated, and a large number of negatively charged residues are the reason of the cross binding observed in this study.


Subject(s)
Chemokine CCL5 , Receptors, CXCR4 , Chemokine CCL5/chemistry , Receptors, CXCR4/metabolism , Receptors, CCR5/chemistry , Chemokine CXCL12 , Peptides/chemistry , Tyrosine
2.
Front Mol Neurosci ; 15: 888420, 2022.
Article in English | MEDLINE | ID: mdl-35592115

ABSTRACT

Tau is a cytosolic protein that has also been observed in the nucleus, where it has multiple proposed functions that are regulated by phosphorylation. However, the mechanism underlying the nuclear import of tau is unclear, as is the contribution of nuclear tau to the pathology of tauopathies. We have previously generated a pathological form of tau, PH-tau (pseudophosphorylation mutants S199E, T212E, T231E, and S262E) that mimics AD pathological behavior in cells, Drosophila, and a mouse model. Here, we demonstrated that PH-tau translocates into the nucleus of transiently transfected HEK-293 cells, but wildtype tau does not. We identified a putative importin binding site in the tau sequence, and showed that disruption of this site prevents tau from entering the nucleus. We further showed that this nuclear translocation is prevented by inhibitors of both importin-α and importin-ß. In addition, expression of PH-tau resulted in an enlarged population of dying cells, which is prevented by blocking its entry into the nucleus. PH-tau-expressing cells also exhibited disruption of the nuclear lamina and mislocalization of TDP-43 to the cytoplasm. We found that PH-tau does not bundle microtubules, and this effect is independent of nuclear translocation. These results demonstrate that tau translocates into the nucleus through the importin-α/ß pathway, and that PH-tau exhibits toxicity after its nuclear translocation. We propose a model where hyperphosphorylated tau not only disrupts the microtubule network, but also translocates into the nucleus and interferes with cellular functions, such as nucleocytoplasmic transport, inducing mislocalization of proteins like TDP-43 and, ultimately, cell death.

3.
FEBS J ; 289(11): 3132-3147, 2022 06.
Article in English | MEDLINE | ID: mdl-34921512

ABSTRACT

The N-terminal segment of CCR5 contains four tyrosine residues, sulphation of two of which is essential for high-affinity binding to gp120. In the present study, the interactions of gp120YU2 with a 27-residue N-terminal CCR5 peptide sulphated at position Y10 and Y14, i.e. Nt-CCR5, were studied using 13 C-edited-HMQC methyl-NOESY [1 H(13 C)-1 H], combined with transferred NOE NMR spectroscopy. A large number of pairwise interactions were observed between the methyl protons of methionine, threonine, valine and isoleucine residues of gp120, and the aromatic tyrosine-protons of Nt-CCR5. M434, V120 and V200 of gp120 were found to interact with all four tyrosine residues, Y3, sY10, sY14 and Y15. Particularly intriguing was the observation that Y3 and Y15 interact with the same gp120 methyl protons. Such interactions cannot be explained by the single cryo-EM structure of gp120/CD4/CCR5 complex published recently (Nature, 565, 318-323, 2019). Rather, they are consistent with the existence of a dynamic equilibrium involving two or more binding modes of Nt-CCR5 to gp120. These different modes of binding can coexist because the surface of gp120 contains two sites that can optimally interact with a sulphated tyrosine residue and two sites that can interact favorably with a non-sulphated tyrosine residue. Modelling of gp120YU2 complexed with the Nt-CCR5 peptide or with the entire CCR5 receptor provides an explanation for the NMR observations and the existence of these different binding modes of the disordered N-terminus of CCR5. The data presented extend our understanding of the two-step model and suggest a more variable binding mode of Nt-CCR5 with gp120.


Subject(s)
HIV-1 , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/metabolism , HIV-1/metabolism , Peptides/chemistry , Protein Binding , Protons , Receptors, CCR5/chemistry , Tyrosine/metabolism
4.
Toxins (Basel) ; 13(10)2021 10 12.
Article in English | MEDLINE | ID: mdl-34679015

ABSTRACT

The voltage-gated sodium channel NaV1.7 is an important target for drug development due to its role in pain perception. Recombinant expression of full-length channels and their use for biophysical characterization of interactions with potential drug candidates is challenging due to the protein size and complexity. To overcome this issue, we developed a protocol for the recombinant expression in E. coli and refolding into lipids of the isolated voltage sensing domain (VSD) of repeat II of NaV1.7, obtaining yields of about 2 mg of refolded VSD from 1 L bacterial cell culture. This VSD is known to be involved in the binding of a number of gating-modifier toxins, including the tarantula toxins ProTx-II and GpTx-I. Binding studies using microscale thermophoresis showed that recombinant refolded VSD binds both of these toxins with dissociation constants in the high nM range, and their relative binding affinities reflect the relative IC50 values of these toxins for full-channel inhibition. Additionally, we expressed mutant VSDs incorporating single amino acid substitutions that had previously been shown to affect the activity of ProTx-II on full channel. We found decreases in GpTx-I binding affinity for these mutants, consistent with a similar binding mechanism for GpTx-I as compared to that of ProTx-II. Therefore, this recombinant VSD captures many of the native interactions between NaV1.7 and tarantula gating-modifier toxins and represents a valuable tool for elucidating details of toxin binding and specificity that could help in the design of non-addictive pain medication acting through NaV1.7 inhibition.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel/chemistry , Protein Folding , Spider Venoms/chemistry , Amino Acid Substitution , Binding Sites , Escherichia coli , Humans , Recombinant Proteins
5.
Ann Surg Oncol ; 28(7): 3512-3521, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33230747

ABSTRACT

BACKGROUND: Adjuvant radiation therapy (RT) can decrease lymph node basin (LNB) recurrences in patients with clinically evident melanoma lymph node (LN) metastases following lymphadenectomy, but its role in the era of modern systemic therapies (ST), immune checkpoint or BRAF/MEK inhibitors, is unclear. PATIENTS AND METHODS: Patients at four institutions who underwent lymphadenectomy (1/1/2010-12/31/2019) for clinically evident melanoma LN metastases and received neoadjuvant and/or adjuvant ST with RT, or ST alone, but met indications for RT, were identified. Comparisons were made between ST alone and ST/RT groups. The primary outcome was 3-year cumulative incidence (CI) of LNB recurrence. Secondary outcomes included 3-year incidences of in-transit/distant recurrence and survival estimates. RESULTS: Of 98 patients, 76 received ST alone and 22 received ST/RT. Median follow-up time for patients alive at last follow-up was 44.6 months. The ST/RT group had fewer inguinal node metastases (ST 36.8% versus ST/RT 9.1%; P = 0.04), and more extranodal extension (ST 50% versus ST/RT 77.3%; P = 0.02) and positive lymphadenectomy margins (ST 2.6% versus ST/RT 13.6%; P = 0.04). The 3-year CI of LNB recurrences was lower for the ST/RT group compared with the ST group (13.9% versus 25.2%), but this reduction was not statistically significant (P = 0.36). Groups did not differ significantly in in-transit/distant recurrences (P = 0.24), disease-free survival (P = 0.14), or melanoma-specific survival (P = 0.20). CONCLUSIONS: In the era of modern ST, RT may still have value in reducing LNB recurrences in melanoma with clinical LN metastases. Further research should focus on whether select patient populations derive benefit from combination therapy, and optimizing indications for RT following neoadjuvant ST.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Lymph Node Excision , Melanoma/pathology , Melanoma/radiotherapy , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/radiotherapy , Neoplasm Staging , Radiotherapy, Adjuvant , Skin Neoplasms/pathology
6.
FEBS J ; 288(5): 1648-1663, 2021 03.
Article in English | MEDLINE | ID: mdl-32814359

ABSTRACT

The N-terminal segment of the chemokine receptor Human CC chemokine receptor 5 (CCR5), Nt-CCR5, contains four tyrosine residues, Y3, Y10, Y14, and Y15. Sulfation of at least two of these tyrosine residues was found to be essential for high-affinity binding of CCR5 to its chemokine ligands. Here, we show that among the monosulfated Nt-CCR5(8-20) peptide surrogates (sNt-CCR5) those sulfated at Y15 and Y14 have the highest affinity for the CC chemokine ligand 5 (CCL5) chemokine in comparison with monosulfation at position Y10. Sulfation at Y3 was not investigated. A peptide sulfated at both Y14 and Y15 has the highest affinity for CCL5 by up to a factor of 3, in comparison with the other disulfated (sNt-CCR5) peptides. Chemical shift perturbation analysis and transferred nuclear Overhauser effect measurements indicate that the sulfated tyrosine residues interact with the same CCL5-binding pocket and that each of the sulfated tyrosines at positions 10, 14, and 15 can occupy individually the binding site on CCL5 in a similar manner, although with somewhat different affinity, suggesting the possibility of allovalency in sulfated Nt-CCR5 peptides. The affinity of the disulfated peptides to CCL5 could be increased by this allovalency and by stronger electrostatic interactions.


Subject(s)
Chemokine CCL5/chemistry , Protein Processing, Post-Translational , Receptors, CCR5/chemistry , Sulfates/chemistry , Tyrosine/chemistry , Amino Acid Sequence , Binding Sites , Chemokine CCL5/genetics , Chemokine CCL5/metabolism , Gene Expression , Humans , Ligands , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Receptors, CCR5/genetics , Receptors, CCR5/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Static Electricity , Sulfates/metabolism , Tyrosine/metabolism
7.
J Biomol NMR ; 74(12): 681-693, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32997264

ABSTRACT

Many proteins interact with their ligand proteins by recognition of short linear motifs that are often intrinsically disordered. These interactions are usually weak and are characterized by fast exchange. NMR spectroscopy is a powerful tool to study weak interactions. The methods that have been commonly used are analysis of chemicals shift perturbations (CSP) upon ligand binding and saturation transfer difference spectroscopy. These two methods identify residues at the binding interface between the protein and its ligand. In the present study, we used a combination of transferred-NOE, specific methyl-labeling and an optimized isotope-edited/isotope-filtered NOESY experiment to study specific interactions between the 42 kDa p38α mitogen-activated protein kinase and the kinase interaction motif (KIM) on the STEP phosphatase. These measurements distinguished between residues that both exhibit CSPs upon ligand binding and interact with the KIM peptide from residues that exhibit CSPs but do not interact with the peptide. In addition, these results provide information about pairwise interactions that is important for a more reliable docking of the KIM peptide into its interacting surface on p38α. This combination of techniques should be applicable for many protein-peptide complexes up to 80 kDa for which methyl resonance assignment can be achieved.


Subject(s)
Carbon Isotopes/chemistry , Nuclear Magnetic Resonance, Biomolecular , Proteins/chemistry , Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Computer Simulation , Humans , Kinetics , Peptides/chemistry , Peptides/metabolism , Protein Binding , Protein Structure, Secondary , p38 Mitogen-Activated Protein Kinases/chemistry , p38 Mitogen-Activated Protein Kinases/metabolism
8.
Front Cell Neurosci ; 13: 403, 2019.
Article in English | MEDLINE | ID: mdl-31555098

ABSTRACT

The microtubule associated protein tau is mainly found in the cell's cytosol but recently it was also shown in the extracellular space. In neurodegenerative diseases, like Alzheimer's disease (AD), pathological tau spreads from neuron to neuron enhancing neurodegeneration. Here, we show that HEK293 cells and neurons in culture uptake extracellular normal and pathological Tau. Muscarinic receptor antagonists atropine and pirenzepine block 80% this uptake. CHO cells do not express these receptors therefore cannot uptake tau, unless transfected with M1 and/or M3 receptor. These results strongly suggest that muscarinic receptors mediate this process. Uptake of normal tau in neurons enhances neuronal process formation but a pseudophosphorylated form of tau (pathological human tau, PH-Tau) disrupts them and accumulates in the somatodendritic compartment. AD hyperphosphorylated tau (AD P-Tau) has similar effects as PH-Tau on cultured neurons. Addition of either PH-Tau or AD P-tau to neuronal cultures induced microglial activation. In conclusion, uptake of extracellular tau is mediated by muscarinic receptors with opposite effects: normal tau stabilizes neurites; whereas pathological tau disrupts this process leading to neurodegeneration.

9.
Front Cell Neurosci ; 12: 338, 2018.
Article in English | MEDLINE | ID: mdl-30356756

ABSTRACT

Tau is a neuronal microtubule associated protein whose main biological functions are to promote microtubule self-assembly by tubulin and to stabilize those already formed. Tau also plays an important role as an axonal microtubule protein. Tau is an amazing protein that plays a key role in cognitive processes, however, deposits of abnormal forms of tau are associated with several neurodegenerative diseases, including Alzheimer disease (AD), the most prevalent, and Chronic Traumatic Encephalopathy (CTE) and Traumatic Brain Injury (TBI), the most recently associated to abnormal tau. Tau post-translational modifications (PTMs) are responsible for its gain of toxic function. Alonso et al. (1996) were the first to show that the pathological tau isolated from AD brains has prion-like properties and can transfer its toxic function to the normal molecule. Furthermore, we reported that the pathological changes are associated with tau phosphorylation at Ser199 and 262 and Thr212 and 231. This pathological version of tau induces subcellular mislocalization in cultured cells and neurons, and translocates into the nucleus or accumulated in the perinuclear region of cells. We have generated a transgenic mouse model that expresses pathological human tau (PH-Tau) in neurons at two different concentrations (4% and 14% of the total endogenous tau). In this model, PH-Tau causes cognitive decline by at least two different mechanisms: one that involves the cytoskeleton with axonal disruption (at high concentration), and another in which the apparent neuronal morphology is not grossly affected, but the synaptic terminals are altered (at lower concentration). We will discuss the putative involvement of tau in proteostasis under these conditions. Understanding tau's biological activity on and off the microtubules will help shed light to the mechanism of neurodegeneration and of normal neuronal function.

10.
Solid State Nucl Magn Reson ; 94: 1-6, 2018 10.
Article in English | MEDLINE | ID: mdl-30096558

ABSTRACT

The effects of various lipid bound paramagnetic metal ions on liposomes prepared in the presence of trehalose and chelator lipids are evaluated to observe site-specific signal changes on liposome samples with optimal resolution in solid-state NMR spectroscopy. We found that Mn2+, Gd3+ and Dy3+ have different influences on the lipid 13C sites depending on their penetration depths into the bilayer, which can be extracted as distance information. The trehalose-liposome mixture is efficiently packed into solid-state NMR rotors and provides optimal resolution at reasonable instrument temperatures (10-50 °C). The effectiveness and convenience of the trehalose preparation for studying a membrane protein in liposomes are demonstrated by a membrane sample with a model membrane peptide to show that trehalose is useful to prepare consistent and stable membrane protein liposome samples for solid-state NMR.


Subject(s)
Chelating Agents/chemistry , Liposomes/chemistry , Magnetic Resonance Spectroscopy , Membrane Lipids/chemistry , Metals/chemistry , Trehalose/chemistry , Lipid Bilayers/chemistry
11.
J Alzheimers Dis ; 64(s1): S507-S516, 2018.
Article in English | MEDLINE | ID: mdl-29614672

ABSTRACT

The microtubule associated protein tau in a hyperphosphorylated form was identified as the building block of the filamentous aggregates found in the neurons of Alzheimer's disease (AD) patients. In the abnormal state, hyperphosphorylated tau from AD brains (AD P-tau) was unable to promote microtubule assembly and more importantly, it could inhibit the normal activity of tau and other MAPs. AD P-tau was able to disrupt preformed microtubules and, by binding to normal tau, turn the latter into an AD P-tau like molecule. AD P-tau toxic behavior was prevalent in the soluble form and it was lost upon dephosphorylation. Mutations on tau associated with disease, e.g., R406W in frontotemporal dementia with Parkinsonism linked to chromosome 17, altered its conformation to make it a better substrate for kinases. Using phospho-mimetics, it was found that the minimum phospho-sites necessary to acquire such a toxic behavior of tau were at 199, 212, 231 and 262, and tau pseudophosphorylated at those sites in combination with R406W was named Pathological Human Tau (PH-Tau). PH-Tau expressed in cells had similar behavior to AD P-tau: disruption of the microtubule system, change in the normal subcellular localization, and gain of toxic function for cells. In animal models expressing PH-Tau, it was found that two putative mechanisms of neurodegeneration exist depending on the concentration of the toxic protein, both involving cognitive decline, due to synaptic dysfunction at lower concentration and neuronal death at higher. Studies investigating the mechanism of tau pathology and its transmission from neuron to neuron are currently ongoing.


Subject(s)
tau Proteins/metabolism , Animals , Humans , Neurons/metabolism , Neurons/pathology , Phosphorylation , Tauopathies/metabolism , Tauopathies/pathology , tau Proteins/genetics
12.
Molecules ; 23(1)2018 Jan 18.
Article in English | MEDLINE | ID: mdl-29346317

ABSTRACT

Glioblastoma (GBM) is a deadly brain tumor with a current mean survival of 12-15 months. Despite being a potent anti-cancer agent, the turmeric ingredient curcumin (C) has limited anti-tumor efficacy in vivo due to its low bioavailability. We have reported earlier a strategy involving the use two other polyphenols, epicatechin gallate (E) from green tea and resveratrol (R) from red grapes at a unique, synergistic molar ratio with C (C:E:R: 4:1:12.5, termed TriCurin) to achieve superior potency against HPV+ tumors than C alone at C:E:R (µM): 32:8:100 (termed 32 µM+ TriCurin). We have now prepared liposomal TriCurin (TrLp) and demonstrated that TrLp boosts activated p53 in cultured GL261 mouse GBM cells to trigger apoptosis of GBM and GBM stem cells in vitro. TrLp administration into mice yielded a stable plasma concentration of 210 nM C for 60 min, which, though sub-lethal for cultured GL261 cells, was able to cause repolarization of M2-like tumor (GBM)-associated microglia/macrophages to the tumoricidal M1-like phenotype and intra-GBM recruitment of activated natural killer cells. The intratumor presence of such tumoricidal immune cells was associated with concomitant suppression of tumor-load, and apoptosis of GBM and GBM stem cells. Thus, TrLp is a potential onco-immunotherapeutic agent against GBM tumors.


Subject(s)
Catechin/analogs & derivatives , Curcumin/administration & dosage , Drug Combinations , Liposomes , Macrophages/drug effects , Microglia/drug effects , Neoplastic Stem Cells/drug effects , Stilbenes/administration & dosage , Animals , Biomarkers, Tumor , Catechin/administration & dosage , Catechin/chemistry , Catechin/pharmacokinetics , Cell Line, Tumor , Curcumin/chemistry , Curcumin/pharmacokinetics , Disease Models, Animal , Drug Synergism , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Immunophenotyping , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Microglia/immunology , Microglia/metabolism , Resveratrol , Stilbenes/chemistry , Stilbenes/pharmacokinetics , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
13.
J Biol Chem ; 291(53): 27170-27186, 2016 12 30.
Article in English | MEDLINE | ID: mdl-27864365

ABSTRACT

Folding of G-protein coupled receptors (GPCRs) according to the two-stage model (Popot, J. L., and Engelman, D. M. (1990) Biochemistry 29, 4031-4037) is postulated to proceed in 2 steps: partitioning of the polypeptide into the membrane followed by diffusion until native contacts are formed. Herein we investigate conformational preferences of fragments of the yeast Ste2p receptor using NMR. Constructs comprising the first, the first two, and the first three transmembrane (TM) segments, as well as a construct comprising TM1-TM2 covalently linked to TM7 were examined. We observed that the isolated TM1 does not form a stable helix nor does it integrate well into the micelle. TM1 is significantly stabilized upon interaction with TM2, forming a helical hairpin reported previously (Neumoin, A., Cohen, L. S., Arshava, B., Tantry, S., Becker, J. M., Zerbe, O., and Naider, F. (2009) Biophys. J. 96, 3187-3196), and in this case the protein integrates into the hydrophobic interior of the micelle. TM123 displays a strong tendency to oligomerize, but hydrogen exchange data reveal that the center of TM3 is solvent exposed. In all GPCRs so-far structurally characterized TM7 forms many contacts with TM1 and TM2. In our study TM127 integrates well into the hydrophobic environment, but TM7 does not stably pack against the remaining helices. Topology mapping in microsomal membranes also indicates that TM1 does not integrate in a membrane-spanning fashion, but that TM12, TM123, and TM127 adopt predominantly native-like topologies. The data from our study would be consistent with the retention of individual helices of incompletely synthesized GPCRs in the vicinity of the translocon until the complete receptor is released into the membrane interior.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Peptide Fragments/chemistry , Receptors, Mating Factor/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Micelles , Protein Conformation , Protein Domains , Sequence Homology, Amino Acid
14.
Alzheimers Dement ; 12(10): 1090-1097, 2016 10.
Article in English | MEDLINE | ID: mdl-27126544

ABSTRACT

INTRODUCTION: Accumulation of hyperphosphorylated tau and the disruption of microtubules are correlated with synaptic loss and pathology of Alzheimer's disease (AD). Impaired cognitive function and pathology of AD is correlated with this lesion. This review looks at the mechanism of neurodegeneration, the prion-like behavior of tau in its interaction with normal MAPs in correlation with tau hyperphosphorylation. METHODS: We reviewed our work in the field as well as current literature that pertains to tau phosphorylation and the biological effects. RESULTS: Hyperphosphorylation of tau in AD, in vitro, in cells, or in animal models converts this protein into a prion-like protein that is able to propagate the altered conformation. DISCUSSION: These findings suggest that phosphorylation of tau is a critical event in neurodegeneration. The combination of phosphorylation sites can generate a gain of toxic function for tau. The mechanism of tau toxicity might involve not only the microtubule system but also interference with other cellular compartments such as the nucleus and the actin cytoskeleton.


Subject(s)
Microtubules , Prion Diseases , Tauopathies/metabolism , tau Proteins/metabolism , Alzheimer Disease/pathology , Animals , Humans , Phosphorylation
15.
J Pept Sci ; 21(3): 212-22, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25645975

ABSTRACT

This report summarizes recent biophysical and protein expression experiments on polypeptides containing the N-terminus, the first, second, and third transmembrane (TM) domains and the contiguous loops of the α-factor receptor Ste2p, a G protein-coupled receptor. The 131-residue polypeptide Ste2p(G31-R161), TM1-TM3, was investigated by solution NMR in trifluoroethanol/water. TM1-TM3 contains helical TM domains at the predicted locations, supported by continuous sets of medium-range NOEs. In addition, a short helix N-terminal to TM1 was detected, as well as a short helical stretch in the first extracellular loop. Two 161-residue polypeptides, [Ste2p(M1-R161), NT-TM1-TM3], that contain the entire N-terminal sequence, one with a single mutation, were directly expressed and isolated from Escherichia coli in yields as high as 30 mg/L. Based on its increased stability, the L11P mutant will be used in future experiments to determine long-range interactions. The study demonstrated that 3-TM domains of a yeast G protein-coupled receptor can be produced in isotopically labeled form suitable for solution NMR studies. The quality of spectra is superior to data recorded in micelles and allows more rapid data analysis. No tertiary contacts have been determined, and if present, they are likely transient. This observation supports earlier studies by us that secondary structure was retained in smaller fragments, both in organic solvents and in detergent micelles, but that stable tertiary contacts may only be present when the protein is imbedded in lipids.


Subject(s)
Receptors, Mating Factor/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Trifluoroethanol/chemistry , Water/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Isotope Labeling , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, Mating Factor/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae Proteins/genetics , Thermodynamics
16.
Biopolymers ; 102(3): 223-43, 2014 May.
Article in English | MEDLINE | ID: mdl-24687329

ABSTRACT

The structural characterization of G protein-coupled receptors has surged since the development of methodologies to facilitate the crystallization of these highly helical, seven transmembrane, integral membrane receptors. In the past seven years, eighteen GPCR structures were determined by X-ray crystallography. The crystal structures represent a static picture of these conformationally flexible signal transducers. Analyses that probe their dynamics and conformational changes require other techniques, in particular solution state nuclear magnetic resonance studies. Such investigations are challenged by the size of GPCRs, their α-helical structure, which limits resonance dispersion, their tendencies to aggregate in micellar preparations and their conformational heterogeneity. For many years, groups have been studying GPCR fragments as a means to overcome some of these difficulties. The results of these fragment analyses are presented here. Review of the literature reveals that much of the original work depended on circular dichroism, infra-red spectroscopy and fluorescence approaches. High resolution structures obtained by NMR are compared, where applicable, to the available crystal structures. In most cases, the work done on fragments by biophysical analysis is validated by these comparisons. Our perspective on the field of GPCR fragment analysis is presented together with the future goals that must be considered if work with fragments is continued.


Subject(s)
Peptide Fragments/chemistry , Receptors, G-Protein-Coupled/chemistry , Analytic Sample Preparation Methods , Isotope Labeling , Models, Molecular
17.
Neurosci Bull ; 30(2): 346-58, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24733656

ABSTRACT

The accumulation of hyperphosphorylated tau is a common feature of several dementias. Tau is one of the brain microtubule-associated proteins. Here we discuss tau's functions in microtubule assembly and stabilization and with regard to its interactions with other proteins. We describe and analyze important post-translational modifications: hyperphosphorylation, ubiquitination, glycation, glycosylation, nitration, polyamination, proteolysis, acetylation, and methylation. We discuss how these post-translational modifications can alter tau's biological function. We analyze the role of mitochondrial health in neurodegeneration. We propose that microtubules could be a therapeutic target and review different approaches. Finally, we consider whether tau accumulation or its conformational change is related to tau-induced neurodegeneration, and propose a mechanism of neurodegeneration.


Subject(s)
Dementia/metabolism , Nerve Degeneration/metabolism , Protein Processing, Post-Translational/physiology , tau Proteins/metabolism , Animals , Dementia/pathology , Humans , Microtubules/metabolism , Microtubules/pathology , Nerve Degeneration/pathology
18.
Biopolymers ; 102(1): 16-29, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23897574

ABSTRACT

Structural analysis by NMR of G protein-coupled receptors (GPCRs) has proven to be extremely challenging. To reduce the number of peaks in the NMR spectra by segmentally labeling a GPCR, we have developed a Guided Reconstitution method that includes the use of charged residues and Cys activation to drive heterodimeric disulfide bond formation. Three different cysteine-activating reagents: 5-5'-dithiobis(2-nitrobenzoic acid) [DTNB], 2,2'-dithiobis(5-nitropyridine) [DTNP], and 4,4'-dipyridyl disulfide [4-PDS] were analyzed to determine their efficiency in heterodimer formation at different pHs. Short peptides representing the N-terminal (NT) and C-terminal (CT) regions of the first extracellular loop (EL1) of Ste2p, the Saccharomyces cerevisiae alpha-factor mating receptor, were activated using these reagents and the efficiencies of activation and rates of heterodimerization were analyzed. Activation of NT peptides with DTNP and 4-PDS resulted in about 60% yield, but heterodimerization was rapid and nearly quantitative. Double transmembrane domain protein fragments were biosynthesized and used in Guided Reconstitution reactions. A 102-residue fragment, 2TM-tail [Ste2p(G31-I120C)], was heterodimerized with CT-EL1-tail(DTNP) at pH 4.6 with a yield of ∼75%. A 132-residue fragment, 2TMlong-tail [Ste2p(M1-I120C)], was expressed in both unlabeled and (15)N-labeled forms and used with a peptide comprising the third transmembrane domain, to generate a 180-residue segmentally labeled 3TM protein that was found to be segmentally labeled using [(15)N,(1)H]-HSQC analysis. Our data indicate that the Guided Reconstitution method would be applicable to the segmental labeling of a membrane protein with 3 transmembrane domains and may prove useful in the preparation of an intact reconstituted GPCR for use in biophysical analysis and structure determination.


Subject(s)
Biochemistry/methods , Membrane Proteins/chemistry , Amino Acid Sequence , Cyanogen Bromide/chemistry , Cysteine/chemistry , Disulfides/metabolism , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Membrane Proteins/isolation & purification , Molecular Sequence Data , Mutation/genetics , Peptides/chemistry , Protein Multimerization , Receptors, Mating Factor/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Time Factors
19.
Biopolymers ; 98(5): 485-500, 2012.
Article in English | MEDLINE | ID: mdl-23203693

ABSTRACT

To conduct biophysical analyses on large domains of GPCRs, multimilligram quantities of highly homogeneous proteins are necessary. This communication discusses the biosynthesis of four transmembrane and five transmembrane-containing fragments of Ste2p, a GPCR recognizing the Saccharomyces cerevisiae tridecapeptide pheromone α-factor. The target fragments contained the predicted four N-terminal Ste2p[G(31) -A(198) ] (4TMN), four C-terminal Ste2p[T(155) -L(340) ] (4TMC), or five C-terminal Ste2p[I(120) -L(340) ] (5TMC) transmembrane segments of Ste2p. 4TMN was expressed as a fusion protein using a modified pMMHa vector in L-arabinose-induced Escherichia coli BL21-AI, and cleaved with cyanogen bromide. 4TMC and 5TMC were obtained by direct expression using a pET21a vector in IPTG-induced E. coli BL21(DE3) cells. 4TMC and 5TMC were biosynthesized on a preparative scale, isolated in multimilligram amounts, characterized by MS and investigated by biophysical methods. CD spectroscopy indicated the expected highly α-helical content for 4TMC and 5TMC in membrane mimetic environments. Tryptophan fluorescence showed that 5TMC integrated into the nonpolar region of 1-stearoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol) micelles. HSQC-TROSY investigations revealed that [(15) N]-labeled 5TMC in 50% trifluoroethanol-d(2) /H(2) O/0.05%-trifluoroacetic acid was stable enough to conduct long multidimensional NMR measurements. The entire Ste2p GPCR was not readily reconstituted from the first two and last five or first three and last four transmembrane domains.


Subject(s)
Peptide Fragments/biosynthesis , Receptors, G-Protein-Coupled/biosynthesis , Receptors, G-Protein-Coupled/isolation & purification , Receptors, Mating Factor/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Amino Acid Sequence , Biomimetics , Biophysical Phenomena , Cell Membrane/chemistry , Cyanogen Bromide/chemistry , Electrophoresis, Polyacrylamide Gel , Escherichia coli/chemistry , Genetic Vectors/chemistry , Inclusion Bodies/chemistry , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Peptide Fragments/chemistry , Peptide Fragments/isolation & purification , Plasmids/chemistry , Protein Multimerization , Protein Stability , Protein Structure, Secondary , Receptors, G-Protein-Coupled/chemistry , Recombinant Fusion Proteins/chemistry , Saccharomyces cerevisiae/chemistry , Tryptophan/chemistry
20.
Biopolymers ; 96(6): 757-71, 2011.
Article in English | MEDLINE | ID: mdl-21695690

ABSTRACT

Structural characterization of G protein-coupled receptors (GPCRs) is hindered by the inherent hydrophobicity, flexibility, and large size of these signaling proteins. Insights into conformational preferences and the three-dimensional (3D) structure of domains of these receptors can be obtained using polypeptide fragments of these proteins. Herein, we report the expression, purification, and biophysical characterization of a three-transmembrane domain-containing 131-residue fragment of the yeast α-factor receptor, Ste2p. Ste2p TM1­TM3 (G31­R161) was expressed as a TrpΔLE fusion protein in Escherichia coli. The expressed protein was subject to CNBr cleavage to remove the fusion tag and TM1­TM3 was purified by reverse-phased HPLC. The cleavage product was isolated in yields of up to 20 mg per liter of culture in both unlabeled and uniformly [15N]-labeled and [15N, 13C, 2H]-labeled forms. The secondary structure of TM1­TM3 was determined to be helical in a number of membrane mimetic environments, including 2,2,2-trifluoroethanol (TFE):water and lysomyristoylphosphatidylglycerol (LMPG) detergent micelles by circular dichroism. Preliminary HSQC analysis in 50% TFE:water and LMPG micelles prepared in sodium phosphate and 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid (HEPES) buffers revealed that this fragment is suitable for structural analysis by nuclear magnetic resonance (NMR). Complete backbone assignments and a detailed localization of the secondary structural elements of TM1­TM3 in 50% TFE:water have been achieved.


Subject(s)
Peptide Fragments/metabolism , Receptors, G-Protein-Coupled/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Biophysics , Chromatography, High Pressure Liquid , Circular Dichroism , Electrophoresis, Polyacrylamide Gel , Mass Spectrometry , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Peptide Fragments/chemistry , Protein Structure, Secondary , Receptors, G-Protein-Coupled/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...