Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 62(19): 8711-8732, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31532644

ABSTRACT

Clinical development of catechol-based orthosteric agonists of the dopamine D1 receptor has thus far been unsuccessful due to multiple challenges. To address these issues, we identified LY3154207 (3) as a novel, potent, and subtype selective human D1 positive allosteric modulator (PAM) with minimal allosteric agonist activity. Conformational studies showed LY3154207 adopts an unusual boat conformation, and a binding pose with the human D1 receptor was proposed based on this observation. In contrast to orthosteric agonists, LY3154207 showed a distinct pharmacological profile without a bell-shaped dose-response relationship or tachyphylaxis in preclinical models. Identification of a crystalline form of free LY3154207 from the discovery lots was not successful. Instead, a novel cocrystal form with superior solubility was discovered and determined to be suitable for development. This cocrystal form was advanced to clinical development as a potential first-in-class D1 PAM and is now in phase 2 studies for Lewy body dementia.


Subject(s)
Isoquinolines/pharmacology , Receptors, Dopamine D1/agonists , Acetylcholine/metabolism , Administration, Oral , Allosteric Regulation/drug effects , Animals , Binding Sites , Crystallography, X-Ray , Cyclic AMP/metabolism , HEK293 Cells , Half-Life , Humans , Isoquinolines/chemistry , Isoquinolines/pharmacokinetics , Kidney/drug effects , Kidney/metabolism , Locomotion/drug effects , Mice , Molecular Conformation , Protein Isoforms/agonists , Protein Isoforms/metabolism , Rats , Receptors, Dopamine D1/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
2.
J Pharmacol Exp Ther ; 360(1): 117-128, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27811173

ABSTRACT

Allosteric potentiators amplify the sensitivity of physiologic control circuits, a mode of action that could provide therapeutic advantages. This hypothesis was tested with the dopamine D1 receptor potentiator DETQ [2-(2,6-dichlorophenyl)-1-((1S,3R)-3-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one]. In human embryonic kidney 293 (HEK293) cells expressing the human D1 receptor, DETQ induced a 21-fold leftward shift in the cAMP response to dopamine, with a Kb of 26 nM. The maximum response to DETQ alone was ∼12% of the maximum response to dopamine, suggesting weak allosteric agonist activity. DETQ was ∼30-fold less potent at rat and mouse D1 receptors and was inactive at the human D5 receptor. To enable studies in rodents, an hD1 knock-in mouse was generated. DETQ (3-20 mg/kg orally) caused a robust (∼10-fold) increase in locomotor activity (LMA) in habituated hD1 mice but was inactive in wild-type mice. The LMA response to DETQ was blocked by the D1 antagonist SCH39166 and was dependent on endogenous dopamine. LMA reached a plateau at higher doses (30-240 mg/kg) even though free brain levels of DETQ continued to increase over the entire dose range. In contrast, the D1 agonists SKF 82958, A-77636, and dihydrexidine showed bell-shaped dose-response curves with a profound reduction in LMA at higher doses; video-tracking confirmed that the reduction in LMA caused by SKF 82958 was due to competing stereotyped behaviors. When dosed daily for 4 days, DETQ continued to elicit an increase in LMA, whereas the D1 agonist A-77636 showed complete tachyphylaxis by day 2. These results confirm that allosteric potentiators may have advantages compared with direct-acting agonists.


Subject(s)
Behavior, Animal/drug effects , Gene Knock-In Techniques , Isoquinolines/pharmacology , Locomotion/drug effects , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Tachyphylaxis , Adamantane/analogs & derivatives , Adamantane/pharmacology , Allosteric Regulation/drug effects , Animals , Benzopyrans/pharmacology , Dose-Response Relationship, Drug , Female , HEK293 Cells , Humans , Isoquinolines/adverse effects , Male , Mice , Protein Transport/drug effects , Receptors, Dopamine D1/agonists
3.
Bioorg Med Chem Lett ; 25(19): 4337-41, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26271587

ABSTRACT

Preclinical experiments and clinical observations suggest the potential effectiveness of selective 5-HT1F receptor agonists in migraine. Identifying compounds with enhanced selectivity is crucial to assess its therapeutic value. Replacement of the indole nucleus in 2 (LY334370) with a monocyclic phenyl ketone moiety generated potent and more selective 5-HT1F receptor agonists. Focused SAR studies around this central phenyl ring demonstrated that the electrostatic and steric interactions of the substituent with both the amide CONH group and the ketone CO group play pivotal roles in affecting the adopted conformation and thus the 5-HT1F receptor selectivity. Computational studies confirmed the observed results and provide a useful tool in the understanding of the conformational requirements for 5-HT1F receptor agonist activity and selectivity. Through this effort, the 2-F-phenyl and N-2-pyridyl series were also identified as potent and selective 5-HT1F receptor agonists.


Subject(s)
Benzamides/pharmacology , Drug Discovery , Piperidines/pharmacology , Receptors, Serotonin, 5-HT1/metabolism , Serotonin 5-HT1 Receptor Agonists/pharmacology , Benzamides/chemical synthesis , Benzamides/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Piperidines/chemical synthesis , Piperidines/chemistry , Quantum Theory , Serotonin 5-HT1 Receptor Agonists/chemical synthesis , Serotonin 5-HT1 Receptor Agonists/chemistry , Structure-Activity Relationship
4.
Int J Neuropsychopharmacol ; 13(8): 1021-33, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20569520

ABSTRACT

The in-vitro potency and selectivity, in-vivo binding affinity and effect of the 5-HT(6)R antagonist Lu AE58054 ([2-(6-fluoro-1H-indol-3-yl)-ethyl]-[3-(2,2,3,3-tetrafluoropropoxy)-benzyl]-amine) on impaired cognition were evaluated. Lu AE58054 displayed high affinity to the human 5-HT(6) receptor (5-HT(6)R) with a Ki of 0.83 nm. In a 5-HT(6) GTPgammaS efficacy assay Lu AE58054 showed no agonist activity, but demonstrated potent inhibition of 5-HT-mediated activation. Besides medium affinity to adrenergic alpha(1A)- and alpha(1B)-adrenoreceptors, Lu AE58054 demonstrated >50-fold selectivity for more than 70 targets examined. Orally administered Lu AE58054 potently inhibited striatal in-vivo binding of the 5-HT(6) antagonist radioligand [(3)H]Lu AE60157 ([(3)H]8-(4-methylpiperazin-1-yl)-3-phenylsulfonylquinoline), with an ED(50) of 2.7 mg/kg. Steady-state modelling of an acute pharmacokinetic/5-HT(6)R occupancy time-course experiment indicated a plasma EC(50) value of 20 ng/ml. Administration of Lu AE58054 in a dose range (5-20 mg/kg p.o.) leading to above 65% striatal 5-HT(6)R binding occupancy in vivo, reversed cognitive impairment in a rat novel object recognition task induced after subchronic treatment for 7 d with phencyclidine (PCP 2 mg/kg b.i.d., i.p. for 7 d, followed by 7 d drug free). The results indicate that Lu AE58054 is a selective antagonist of 5-HT(6)Rs with good oral bioavailability and robust efficacy in a rat model of cognitive impairment in schizophrenia. Lu AE58054 may be useful for the pharmacotherapy of cognitive dysfunction in disease states such as schizophrenia and Alzheimer's disease.


Subject(s)
Benzylamines/chemistry , Benzylamines/therapeutic use , Cognition Disorders/drug therapy , Cognition Disorders/metabolism , Indoles/chemistry , Indoles/therapeutic use , Phencyclidine/toxicity , Receptors, Serotonin/metabolism , Recognition, Psychology/physiology , Serotonin Antagonists/therapeutic use , Animals , Benzylamines/metabolism , Cells, Cultured , Cognition Disorders/chemically induced , Cricetinae , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Indoles/metabolism , Male , Phencyclidine/administration & dosage , Rats , Rats, Sprague-Dawley , Recognition, Psychology/drug effects , Serotonin Antagonists/chemistry , Serotonin Antagonists/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...