Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
BMJ Open ; 13(9): e074587, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37696630

ABSTRACT

OBJECTIVE: To determine if the introduction of value-based healthcare (VBHC) in fertility care can help to create realistic expectations in patients resulting in increased patient value, by demonstrating the relevance of defining outcome measures that truly matter to subfertile patients. DESIGN: Retrospective cohort study. SETTING: Tertiary fertility centre. RESULTS: Time to pregnancy (TTP) and ongoing pregnancy rate (OPR), as a proxy for the live birth rate, for the full cycle of fertility care, regardless of which and how many treatment cycles performed, were identified as the most relevant medical outcome measures. Outcome measures were incorporated into a digital dashboard by using anonymised and validated patient data from the electronic patient file. We were able to present the TTP and OPR for the population as a whole as well as stratified for age, diagnosis, gravidity and type of gamete source used thereby resulting in a virtual 'patient like me' resembling the individual patient in the consultation room. CONCLUSION: We have shown that, by applying VBHC principles, relevant outcome measures can be generated and stratified for different patient characteristics, in order to develop a virtual 'patient like me'. This virtual 'patient like me' can be used in the consulting room in the form of a digital dashboard, attributing to create realistic patient expectations. This facilitates healthcare providers and patients in shared decision-making.


Subject(s)
Fertility Preservation , Value-Based Health Care , Female , Pregnancy , Humans , Retrospective Studies , Health Facilities , Decision Making, Shared
2.
Hum Reprod ; 38(10): 1952-1960, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37646072

ABSTRACT

STUDY QUESTION: Does assisted hatching increase the cumulative live birth rate in subfertile couples with repeated implantation failure? SUMMARY ANSWER: This study showed no evidence of effect for assisted hatching as an add-on in subfertile couples with repeated implantation failure. WHAT IS KNOWN ALREADY: The efficacy of assisted hatching, with regard to the live birth rate has not been convincingly demonstrated in randomized trials nor meta-analyses. It is suggested though that especially poor prognosis women, e.g. women with repeated implantation failure, might benefit most from assisted hatching. STUDY DESIGN, SIZE, DURATION: The study was designed as a double-blinded, multicentre randomized controlled superiority trial. In order to demonstrate a statistically significant absolute increase in live birth rate of 10% after assisted hatching, 294 participants needed to be included per treatment arm, being a total of 588 subfertile couples. Participants were included and randomized from November 2012 until November 2017, 297 were allocated to the assisted hatching arm of the study and 295 to the control arm. Block randomization in blocks of 20 participants was applied and randomization was concealed from participants, treating physicians, and laboratory staff involved in the embryo transfer procedure. Ovarian hyperstimulation, oocyte retrieval, laboratory procedures, embryo selection for transfer and cryopreservation, the transfer itself, and luteal support were performed according to local protocols and were identical in both the intervention and control arm of the study with the exception of the assisted hatching procedure which was only performed in the intervention group. The laboratory staff performing the assisted hatching procedure was not involved in the embryo transfer itself. PARTICIPANTS/MATERIALS, SETTING, METHODS: Participants were eligible for inclusion in the study after having had either at least two consecutive fresh IVF or ICSI embryo transfers, including the transfer of frozen and thawed embryos originating from those fresh cycles, and which did not result in a pregnancy or as having had at least one fresh IVF or ICSI transfer and at least two frozen embryo transfers with embryos originating from that fresh cycle which did not result in a pregnancy. The study was performed at the laboratory sites of three tertiary referral hospitals and two university medical centres in the Netherlands. MAIN RESULTS AND THE ROLE OF CHANCE: The cumulative live birth rate per started cycle, including the transfer of fresh and subsequent frozen/thawed embryos if applicable, resulted in 77 live births in the assisted hatching group (n = 297, 25.9%) and 68 live births in the control group (n = 295, 23.1%). This proved to be statistically not significantly different (relative risk: 1.125, 95% CI: 0.847 to 1.494, P = 0.416). LIMITATIONS, REASONS FOR CAUTION: There was a small cohort of subfertile couples that after not achieving an ongoing pregnancy, still had cryopreserved embryos in storage at the endpoint of the trial, i.e. 1 year after the last randomization. It cannot be excluded that the future transfer of these frozen/thawed embryos increases the cumulative live birth rate in either or both study arms. Next, at the start of this study, there was no international consensus on the definition of repeated implantation failure. Therefore, it cannot be excluded that assisted hatching might be effective in higher order repeated implantation failures. WIDER IMPLICATIONS OF THE FINDINGS: This study demonstrated no evidence of a statistically significant effect for assisted hatching by increasing live birth rates in subfertile couples with repeated implantation failure, i.e. the couples which, based on meta-analyses, are suggested to benefit most from assisted hatching. It is therefore suggested that assisted hatching should only be offered if information on the absence of evidence of effect is provided, at no extra costs and preferably only in the setting of a clinical trial taking cost-effectiveness into account. STUDY FUNDING/COMPETING INTEREST(S): None. TRIAL REGISTRATION NUMBER: Netherlands Trial Register (NTR 3387, NL 3235, https://www.clinicaltrialregister.nl/nl/trial/26138). TRIAL REGISTRATION DATE: 6 April 2012. DATE OF FIRST PATIENT'S ENROLMENT: 28 November 2012.


Subject(s)
Infertility , Ovarian Hyperstimulation Syndrome , Pregnancy , Humans , Female , Fertilization in Vitro/methods , Sperm Injections, Intracytoplasmic/methods , Embryo Transfer/methods , Birth Rate , Infertility/therapy , Live Birth , Pregnancy Rate
3.
Cochrane Database Syst Rev ; 11: CD005356, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34739136

ABSTRACT

BACKGROUND: Intrauterine insemination (IUI), combined with ovarian stimulation (OS), has been demonstrated to be an effective treatment for infertile couples. Several agents for ovarian stimulation, combined with IUI, have been proposed, but it is still not clear which agents for stimulation are the most effective. This is an update of the review, first published in 2007. OBJECTIVES: To assess the effects of agents for ovarian stimulation for intrauterine insemination in infertile ovulatory women. SEARCH METHODS: We searched the Cochrane Gynaecology and Fertility Group trials register, CENTRAL, MEDLINE, Embase, PsycINFO, CINAHL and two trial registers from their inception to November 2020. We performed reference checking and contacted study authors and experts in the field to identify additional studies. SELECTION CRITERIA: We included truly randomised controlled trials (RCTs) that compared different agents for ovarian stimulation combined with IUI for infertile ovulatory women concerning couples with unexplained infertility. mild male factor infertility and minimal to mild endometriosis. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures recommended by Cochrane. MAIN RESULTS: In this updated review, we have included a total of 82 studies, involving 12,614 women. Due to the multitude of comparisons between different agents for ovarian stimulation, we highlight the seven most often reported here. Gonadotropins versus anti-oestrogens (13 studies) For live birth, the results of five studies were pooled and showed a probable improvement in the cumulative live birth rate for gonadotropins compared to anti-oestrogens (odds ratio (OR) 1.37, 95% confidence interval (CI) 1.05 to 1.79; I2 = 30%; 5 studies, 1924 participants; moderate-certainty evidence). This suggests that if the chance of live birth following anti-oestrogens is assumed to be 22.8%, the chance following gonadotropins would be between 23.7% and 34.6%. The pooled effect of seven studies revealed that we are uncertain whether gonadotropins lead to a higher multiple pregnancy rate compared with anti-oestrogens (OR 1.58, 95% CI 0.60 to 4.17; I2 = 58%; 7 studies, 2139 participants; low-certainty evidence). Aromatase inhibitors versus anti-oestrogens (8 studies) One study reported live birth rates for this comparison. We are uncertain whether aromatase inhibitors improve live birth rate compared with anti-oestrogens (OR 0.75, CI 95% 0.51 to 1.11; 1 study, 599 participants; low-certainty evidence). This suggests that if the chance of live birth following anti-oestrogens is 23.4%, the chance following aromatase inhibitors would be between 13.5% and 25.3%. The results of pooling four studies revealed that we are uncertain whether aromatase inhibitors compared with anti-oestrogens lead to a higher multiple pregnancy rate (OR 1.28, CI 95% 0.61 to 2.68; I2 = 0%; 4 studies, 1000 participants; low-certainty evidence).  Gonadotropins with GnRH (gonadotropin-releasing hormone) agonist versus gonadotropins alone (4 studies) No data were available for live birth. The pooled effect of two studies  revealed that we are uncertain whether gonadotropins with GnRH agonist lead to a higher multiple pregnancy rate compared to gonadotropins alone (OR 2.53, 95% CI 0.82 to 7.86; I2 = 0; 2 studies, 264 participants; very low-certainty evidence).  Gonadotropins with GnRH antagonist versus gonadotropins alone (14 studies) Three studies reported live birth rate per couple, and we are uncertain whether gonadotropins with GnRH antagonist improve live birth rate compared to gonadotropins (OR 1.5, 95% CI 0.52 to 4.39; I2 = 81%; 3 studies, 419 participants; very low-certainty evidence). This suggests that if the chance of a live birth following gonadotropins alone is 25.7%, the chance following gonadotropins combined with GnRH antagonist would be between 15.2% and 60.3%. We are also uncertain whether gonadotropins combined with GnRH antagonist lead to a higher multiple pregnancy rate compared with gonadotropins alone (OR 1.30, 95% CI 0.74 to 2.28; I2 = 0%; 10 studies, 2095 participants; moderate-certainty evidence). Gonadotropins with anti-oestrogens versus gonadotropins alone (2 studies) Neither of the studies reported data for live birth rate. We are uncertain whether gonadotropins combined with anti-oestrogens lead to a higher multiple pregnancy rate compared with gonadotropins alone, based on one study (OR 3.03, 95% CI 0.12 to 75.1; 1 study, 230 participants; low-certainty evidence). Aromatase inhibitors versus gonadotropins (6 studies) Two studies  revealed that aromatase inhibitors may decrease live birth rate compared with gonadotropins (OR 0.49, 95% CI 0.34 to 0.71; I2=0%; 2 studies, 651 participants; low-certainty evidence). This suggests that if the chance of a live birth following gonadotropins alone is 31.9%,  the chance of live birth following aromatase inhibitors would be between 13.7% and 25%. We are uncertain whether aromatase inhibitors compared with gonadotropins lead to a higher multiple pregnancy rate (OR 0.69, 95% CI 0.06 to 8.17; I2=77%; 3 studies, 731 participants; very low-certainty evidence).  Aromatase inhibitors with gonadotropins versus anti-oestrogens with gonadotropins (8 studies) We are uncertain whether aromatase inhibitors combined with gonadotropins improve live birth rate compared with anti-oestrogens plus gonadotropins (OR 0.99, 95% CI 0.3 8 to 2.54;  I2 = 69%; 3 studies, 708 participants; very low-certainty evidence). This suggests that if the chance of a live birth following anti-oestrogens plus gonadotropins is 13.8%, the chance following aromatase inhibitors plus gonadotropins would be between 5.7% and 28.9%. We are uncertain of the effect of aromatase inhibitors combined with gonadotropins compared to anti-oestrogens combined with gonadotropins on multiple pregnancy rate (OR 1.31, 95% CI 0.39 to 4.37;  I2 = 0%; 5 studies, 901 participants; low-certainty evidence). AUTHORS' CONCLUSIONS: Based on the available results, gonadotropins probably improve cumulative live birth rate compared with anti-oestrogens (moderate-certainty evidence). Gonadotropins may also improve cumulative live birth rate when compared with aromatase inhibitors (low-certainty evidence). From the available data, there is no convincing evidence that aromatase inhibitors lead to higher live birth rates compared to anti-oestrogens. None of the agents compared lead to significantly higher multiple pregnancy rates. Based on low-certainty evidence, there does not seem to be a role for different combined therapies, nor for adding GnRH agonists or GnRH antagonists in IUI programs.


Subject(s)
Infertility, Female , Ovulation Induction , Female , Fertilization in Vitro , Humans , Infertility, Female/drug therapy , Insemination , Insemination, Artificial , Live Birth/epidemiology , Male , Pregnancy , Pregnancy Rate
4.
Cochrane Database Syst Rev ; 7: CD003854, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34260059

ABSTRACT

BACKGROUND: In subfertile couples, couples who have tried to conceive for at least one year, intrauterine insemination (IUI) with ovarian hyperstimulation (OH) is one of the treatment modalities that can be offered. When IUI is performed a second IUI in the same cycle might add to the chances of conceiving. In a previous update of this review in 2010 it was shown that double IUI increases pregnancy rates when compared to single IUI. Since 2010, different clinical trials have been published with differing conclusions about whether double IUI increases pregnancy rates compared to single IUI. OBJECTIVES: To determine the effectiveness and safety of double intrauterine insemination (IUI) compared to single IUI in stimulated cycles for subfertile couples. SEARCH METHODS: We searched the Cochrane Gynaecology and Fertility (CGF) Group trials register, CENTRAL, MEDLINE, Embase and CINAHL in July 2020 and LILACS, Google scholar and Epistemonikos in February 2021, together with reference checking and contact with study authors and experts in the field to identify additional studies. SELECTION CRITERIA: We included randomised controlled, parallel trials of double versus single IUIs in stimulated cycles in subfertile couples. DATA COLLECTION AND ANALYSIS: Two authors independently assessed trial quality and extracted data. We contacted study authors for additional information. MAIN RESULTS: We identified in nine studies involving subfertile women. The evidence was of low quality; the main limitations were unclear risk of bias, inconsistent results for some outcomes and imprecision, due to small trials with imprecise results. We are uncertain whether double IUI improves live birth rate compared to single IUI (odds ratio (OR) 1.15, 95% confidence interval (CI) 0.71 to 1.88; I2 = 29%; studies = 3, participants = 468; low quality evidence). The evidence suggests that if the chance of live birth following single IUI is 16%, the chance of live birth following double IUI would be between 12% and 27%. Performing a sensitivity analysis restricted to only randomised controlled trials (RCTs) with low risk of selection bias showed similar results. We are uncertain whether double IUI reduces miscarriage rate compared to single IUI (OR 1.78, 95% CI 0.98 to 3.24; I2 = 0%; studies = 6, participants = 2363; low quality evidence). The evidence suggests that chance of miscarriage following single IUI is 1.5% and the chance following double IUI would be between 1.5% and 5%. The reported clinical pregnancy rate per woman randomised may increase with double IUI group (OR 1.51, 95% CI 1.23 to 1.86; I2 = 34%; studies = 9, participants = 2716; low quality evidence). This result should be interpreted with caution due to the low quality of the evidence and the moderate inconsistency. The evidence suggests that the chance of a pregnancy following single IUI is 14% and the chance following double IUI would be between 16% and 23%. We are uncertain whether double IUI affects multiple pregnancy rate compared to single IUI (OR 2.04, 95% CI 0.91 to 4.56; I2 = 8%; studies = 5; participants = 2203; low quality evidence). The evidence suggests that chance of multiple pregnancy following single IUI is 0.7% and the chance following double IUI would be between 0.85% and 3.7%. We are uncertain whether double IUI has an effect on ectopic pregnancy rate compared to single IUI (OR 1.22, 95% CI 0.35 to 4.28; I2 = 0%; studies = 4, participants = 1048; low quality evidence). The evidence suggests that the chance of an ectopic pregnancy following single IUI is 0.8% and the chance following double IUI would be between 0.3% and 3.2%. AUTHORS' CONCLUSIONS: Our main analysis, of which the evidence is low quality, shows that we are uncertain if double IUI improves live birth and reduces miscarriage compared to single IUI. Our sensitivity analysis restricted to studies of low risk of selection bias for both outcomes is consistent with the main analysis. Clinical pregnancy rate may increase in the double IUI group, but this should be interpreted with caution due to the low quality evidence. We are uncertain whether double IUI has an effect on multiple pregnancy rate and ectopic pregnancy rate compared to single IUI.


Subject(s)
Infertility, Female/therapy , Insemination, Artificial, Homologous/methods , Abortion, Spontaneous/epidemiology , Bias , Confidence Intervals , Female , Humans , Insemination, Artificial, Homologous/statistics & numerical data , Live Birth/epidemiology , Male , Odds Ratio , Ovulation Induction , Pregnancy , Pregnancy Rate , Pregnancy, Ectopic/epidemiology , Pregnancy, Multiple/statistics & numerical data , Randomized Controlled Trials as Topic , Retreatment/methods , Selection Bias
5.
J Natl Cancer Inst ; 113(6): 699-709, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33769500

ABSTRACT

BACKGROUND: Long-term effects of assisted reproductive technology (ART) on ovarian tumor risk are unknown. METHODS: This nationwide cohort study comprises 30 625 women who received ovarian stimulation for ART in 1983-2000 and 9988 subfertile women not treated with ART. Incident invasive and borderline ovarian tumors were ascertained through linkage with the Netherlands Cancer Registry and the Dutch Pathology Registry until July 2018. Ovarian tumor risk in ART-treated women was compared with risks in the general population and the subfertile non-ART group. Statistical tests were 2-sided. RESULTS: After a median follow-up of 24 years, 158 invasive and 100 borderline ovarian tumors were observed. Ovarian cancer risk in the ART group was increased compared with the general population (standardized incidence ratio [SIR] = 1.43, 95% confidence interval [CI] = 1.18 to 1.71) but not when compared with the non-ART group (age- and parity-adjusted hazard ratio [HR] = 1.02, 95% CI = 0.70 to 1.50). Risk decreased with higher parity and with a larger number of successful ART cycles (resulting in childbirth, Ptrend = .001) but was not associated with the number of unsuccessful ART cycles. Borderline ovarian tumor risk was increased in ART-treated women compared with the general population (SIR = 2.20, 95% CI = 1.66 to 2.86) and with non-ART women (HR = 1.84, 95% CI = 1.08 to 3.14). Risk did not increase with more ART cycles or longer follow-up time. CONCLUSIONS: Increased ovarian cancer risk in ART-treated women compared with the general population is likely explained by nulliparity rather than ART treatment. The increased risk of borderline ovarian tumors after ART must be interpreted with caution because no dose-response relationship was observed.


Subject(s)
Ovarian Neoplasms , Reproductive Techniques, Assisted , Carcinoma, Ovarian Epithelial , Cohort Studies , Female , Humans , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/etiology , Ovarian Neoplasms/pathology , Ovulation Induction/adverse effects , Pregnancy , Reproductive Techniques, Assisted/adverse effects
6.
Reprod Biomed Online ; 42(5): 919-929, 2021 May.
Article in English | MEDLINE | ID: mdl-33736993

ABSTRACT

RESEARCH QUESTION: What are the obstetric and neonatal risks for women conceiving via frozen-thawed embryo transfer (FET) during a modified natural cycle compared with an artificial cycle method. DESIGN: A follow-up study to the ANTARCTICA randomized controlled trial (RCT) (NTR 1586) conducted in the Netherlands, which showed that modified natural cycle FET (NC-FET) was non-inferior to artificial cycle FET (AC-FET) in terms of live birth rates. The current study collected data on obstetric and neonatal outcomes of 98 women who had a singleton live birth. The main outcome was birthweight; additional outcomes included hypertensive disorder of pregnancy, premature birth, gestational diabetes, obstetric haemorrhage and neonatal outcomes including Apgar scores and admission to the neonatal ward or the neonatal intensive care unit and congenital anomalies. RESULTS: Data from 82 out of 98 women were analysed according to the per protocol principle. There was no significant difference in the birthweights of children born between groups (mean difference -124 g [-363 g to 114 g]; P = 0.30). Women who conceived by modified NC-FET have a decreased risk of hypertensive disorders of pregnancy compared with AC-FET (relative risk 0.27; 95% CI 0.08-0.94; P = 0.031). Other outcomes, such as rates of premature birth, gestational diabetes or obstetric haemorrhage and neonatal outcomes, were not significantly different. CONCLUSIONS: The interpretation is that modified NC-FET is the preferred treatment in women with ovulatory cycles undergoing FET when the increased risk of obstetrical complications and potential neonatal complications in AC-FET are considered.


Subject(s)
Birth Weight , Embryo Transfer/statistics & numerical data , Hormones/adverse effects , Menstrual Cycle , Obstetric Labor Complications/epidemiology , Adult , Crown-Rump Length , Cryopreservation , Female , Follow-Up Studies , Humans , Hypertension, Pregnancy-Induced/chemically induced , Infant, Newborn , Netherlands/epidemiology , Obstetric Labor Complications/etiology , Pregnancy
7.
Cochrane Database Syst Rev ; 3: CD001838, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32124980

ABSTRACT

BACKGROUND: Intra-uterine insemination (IUI) is a widely-used fertility treatment for couples with unexplained subfertility. Although IUI is less invasive and less expensive than in vitro fertilisation (IVF), the safety of IUI in combination with ovarian hyperstimulation (OH) is debated. The main concern about IUI treatment with OH is the increase in multiple pregnancy rates. OBJECTIVES: To determine whether, for couples with unexplained subfertility, the live birth rate is improved following IUI treatment with or without OH compared to timed intercourse (TI) or expectant management with or without OH, or following IUI treatment with OH compared to IUI in a natural cycle. SEARCH METHODS: We searched the Cochrane Gynaecology and Fertility (CGF) Group trials register, CENTRAL, MEDLINE, Embase, PsycINFO, CINAHL and two trials registers up to 17 October 2019, together with reference checking and contact with study authors for missing or unpublished data. SELECTION CRITERIA: Randomised controlled trials (RCTs) comparing IUI with TI or expectant management, both in stimulated or natural cycles, or IUI in stimulated cycles with IUI in natural cycles in couples with unexplained subfertility. DATA COLLECTION AND ANALYSIS: Two review authors independently performed study selection, quality assessment and data extraction. Primary review outcomes were live birth rate and multiple pregnancy rate. MAIN RESULTS: We include 15 trials with 2068 women. The evidence was of very low to moderate quality. The main limitation was very serious imprecision. IUI in a natural cycle versus timed intercourse or expectant management in a natural cycle It is uncertain whether treatment with IUI in a natural cycle improves live birth rate compared to treatment with expectant management in a natural cycle (odds ratio (OR) 1.60, 95% confidence interval (CI) 0.92 to 2.78; 1 RCT, 334 women; low-quality evidence). If we assume the chance of a live birth with expectant management in a natural cycle to be 16%, that of IUI in a natural cycle would be between 15% and 34%. It is uncertain whether treatment with IUI in a natural cycle reduces multiple pregnancy rates compared to control (OR 0.50, 95% CI 0.04 to 5.53; 1 RCT, 334 women; low-quality evidence). IUI in a stimulated cycle versus timed intercourse or expectant management in a stimulated cycle It is uncertain whether treatment with IUI in a stimulated cycle improves live birth rates compared to treatment with TI in a stimulated cycle (OR 1.59, 95% CI 0.88 to 2.88; 2 RCTs, 208 women; I2 = 72%; low-quality evidence). If we assume the chance of achieving a live birth with TI in a stimulated cycle was 26%, the chance with IUI in a stimulated cycle would be between 23% and 50%. It is uncertain whether treatment with IUI in a stimulated cycle reduces multiple pregnancy rates compared to control (OR 1.46, 95% CI 0.55 to 3.87; 4 RCTs, 316 women; I2 = 0%; low-quality evidence). IUI in a stimulated cycle versus timed intercourse or expectant management in a natural cycle In couples with a low prediction score of natural conception, treatment with IUI combined with clomiphene citrate or letrozole probably results in a higher live birth rate compared to treatment with expectant management in a natural cycle (OR 4.48, 95% CI 2.00 to 10.01; 1 RCT; 201 women; moderate-quality evidence). If we assume the chance of a live birth with expectant management in a natural cycle was 9%, the chance of a live birth with IUI in a stimulated cycle would be between 17% and 50%. It is uncertain whether treatment with IUI in a stimulated cycle results in a lower multiple pregnancy rate compared to control (OR 3.01, 95% CI 0.47 to 19.28; 2 RCTs, 454 women; I2 = 0%; low-quality evidence). IUI in a natural cycle versus timed intercourse or expectant management in a stimulated cycle Treatment with IUI in a natural cycle probably results in a higher cumulative live birth rate compared to treatment with expectant management in a stimulated cycle (OR 1.95, 95% CI 1.10 to 3.44; 1 RCT, 342 women: moderate-quality evidence). If we assume the chance of a live birth with expectant management in a stimulated cycle was 13%, the chance of a live birth with IUI in a natural cycle would be between 14% and 34%. It is uncertain whether treatment with IUI in a natural cycle results in a lower multiple pregnancy rate compared to control (OR 1.05, 95% CI 0.07 to 16.90; 1 RCT, 342 women; low-quality evidence). IUI in a stimulated cycle versus IUI in a natural cycle Treatment with IUI in a stimulated cycle may result in a higher cumulative live birth rate compared to treatment with IUI in a natural cycle (OR 2.07, 95% CI 1.22 to 3.50; 4 RCTs, 396 women; I2 = 0%; low-quality evidence). If we assume the chance of a live birth with IUI in a natural cycle was 14%, the chance of a live birth with IUI in a stimulated cycle would be between 17% and 36%. It is uncertain whether treatment with IUI in a stimulated cycle results in a higher multiple pregnancy rate compared to control (OR 3.00, 95% CI 0.11 to 78.27; 2 RCTs, 65 women; low-quality evidence). AUTHORS' CONCLUSIONS: Due to insufficient data, it is uncertain whether treatment with IUI with or without OH compared to timed intercourse or expectant management with or without OH improves cumulative live birth rates with acceptable multiple pregnancy rates in couples with unexplained subfertility. However, treatment with IUI with OH probably results in a higher cumulative live birth rate compared to expectant management without OH in couples with a low prediction score of natural conception. Similarly, treatment with IUI in a natural cycle probably results in a higher cumulative live birth rate compared to treatment with timed intercourse with OH. Treatment with IUI in a stimulated cycle may result in a higher cumulative live birth rate compared to treatment with IUI in a natural cycle.


Subject(s)
Coitus , Infertility/therapy , Insemination, Artificial/methods , Ovulation Induction/methods , Pregnancy Rate , Abortion, Spontaneous/epidemiology , Female , Fertile Period/physiology , Fertility Agents, Female/therapeutic use , Humans , Insemination, Artificial/adverse effects , Live Birth/epidemiology , Male , Ovarian Hyperstimulation Syndrome , Ovulation Induction/adverse effects , Pregnancy , Pregnancy, Multiple/statistics & numerical data , Randomized Controlled Trials as Topic , Time Factors , Watchful Waiting
8.
Cochrane Database Syst Rev ; 10: CD004507, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31612995

ABSTRACT

BACKGROUND: Semen preparation techniques for assisted reproduction, including intrauterine insemination (IUI), were developed to select the motile morphologically normal spermatozoa. The yield of many motile, morphologically normal spermatozoa might influence treatment choices and therefore outcomes. OBJECTIVES: To compare the effectiveness of three different semen preparation techniques (gradient; swim-up; wash and centrifugation) on clinical outcomes (live birth rate; clinical pregnancy rate) in subfertile couples undergoing IUI. SEARCH METHODS: We searched the Cochrane Gynaecology and Fertility Group (CGFG) trials register, CENTRAL, MEDLINE, Embase, Science Direct Database, National Research Register, Biological Abstracts and clinical trial registries in March 2019, and checked references and contacted study authors to identify additional studies. SELECTION CRITERIA: We included randomised controlled trials (RCTs) comparing the efficacy in terms of clinical outcomes of semen preparation techniques used for subfertile couples undergoing IUI. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures recommended by Cochrane. The primary review outcomes are live birth rate and clinical pregnancy rate per couple. MAIN RESULTS: We included seven RCTS in the review; we included six of these, totalling 485 couples, in the meta-analysis. No trials reported the primary outcome of live birth. The evidence was of very low-quality. The main limitations were (unclear) risk of bias, signs of imprecision and inconsistency in results among studies and the small number of studies/participants included.Swim-up versus gradient technique Considering the quality of evidence, we are uncertain whether there was a difference between clinical pregnancy rates (CPR) for swim-up versus a gradient technique (odds ratio (OR) 0.83, 95% CI 0.51 to 1.35; I² = 71%; 4 RCTs, 370 participants; very low-quality evidence). The results suggest that if the chance of pregnancy after the use of a gradient technique is assumed to be 24%, the chance of pregnancy after using the swim-up technique is between 14% and 30%. We are uncertain whether there was a real difference between ongoing pregnancy rates per couple (OR 0.39, 95% CI 0.19 to 0.82; heterogeneity not applicable; 1 RCT, 223 participants; very low-quality evidence). Considering the quality of evidence, we are uncertain whether there was a difference between multiple pregnancy rates (MPR) per couple comparing a swim-up versus gradient technique (MPR per couple 0% versus 0%; 1 RCT, 25 participants; very low-quality of evidence). Considering the quality of evidence, we are also uncertain whether there was a difference between miscarriage rates (MR) per couple comparing a swim-up versus gradient technique (OR 0.85, 95% CI 0.28 to 2.59; I² = 44%; 3 RCTs, 330 participants; very low-quality evidence). No studies reported on ectopic pregnancy rate, fetal abnormalities or infection rate.Swim-up versus wash techniqueConsidering the quality of evidence, we are uncertain whether there is a difference in clinical pregnancy rates after a swim-up technique versus wash and centrifugation (OR 0.41, 95% CI 0.15 to 1.13; I² = 55%; 2 RCTs, 78 participants; very low-quality evidence). The results suggest that if the chance of pregnancy after the use of a wash technique is assumed to be 38%, the chance of pregnancy after using the swim-up technique is between 9% and 41%. Considering the quality of evidence, we are uncertain whether there was a difference between multiple pregnancy rates between swim-up technique versus wash technique (OR 0.49, 95% CI 0.02 to 13.28; heterogeneity not applicable; 1 RCT, 26 participants; very low-quality evidence). Miscarriage rate was only reported by one study: no miscarriages were reported in either treatment arm. No studies reported on ongoing pregnancy rate, ectopic pregnancy rate, fetal abnormalities or infection rate.Gradient versus wash techniqueConsidering the quality of evidence, we are uncertain whether there is a difference in clinical pregnancy rates after a gradient versus wash and centrifugation technique (OR 1.78, 95% CI 0.58 to 5.46; I² = 52%; 2 RCTs, 94 participants; very low-quality evidence). The results suggest that if the chance of pregnancy after the use of a wash technique is assumed to be 13%, the chance of pregnancy after using the gradient technique is between 8% and 46%. Considering the quality of evidence, we are uncertain whether there was a difference between multiple pregnancy rates per couple between the treatment groups (OR 0.33, 95% CI 0.01 to 8.83; very low-quality evidence). Considering the quality of evidence, we are also uncertain whether there was a difference between miscarriage rates per couple between the treatment groups (OR 6.11, 95% CI 0.27 to 138.45; very low-quality evidence). No studies reported on ongoing pregnancy rate, ectopic pregnancy rate, fetal abnormalities or infection rate. AUTHORS' CONCLUSIONS: There is insufficient evidence to recommend any specific semen preparation technique: swim-up versus gradient versus wash and centrifugation technique. No studies reported on live birth rates. Considering the quality of evidence (very low), we are uncertain whether there is a difference in clinical pregnancy rates, ongoing pregnancy rates, multiple pregnancy rates or miscarriage rates per couple) between the three sperm preparation techniques. Further randomised trials are warranted that report live birth data.

9.
Int J Fertil Steril ; 13(1): 38-44, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30644243

ABSTRACT

BACKGROUND: In vitro maturation (IVM) is an artificial reproductive technology in which immature oocytes are harvested from the ovaries and subsequently will be matured in vitro. IVM does not require ovarian hyperstimulation (OH) and thus the risk of ovarian hyperstimulation syndrome (OHSS) is avoided. In this study, we assessed the live birth rate per initiated IVM cycle in women eligible for in vitro fertilization/intracytoplasmic sperm injection (IVF/ ICSI) and at risk for OHSS. Furthermore, we followed women who were not pregnant after IVM and committed to a conventional IVF/ICSI procedure. MATERIALS AND METHODS: In this multicenter prospective cohort study, we started 76 IVM cycles using recombinant follicle stimulating hormone (rFSH) priming in 68 patients. There were 66 oocyte retrievals, in which a total of 628 oocytes were collected. We incubated the immature oocytes for 24-48 hours and fertilized those that reached metaphase II by ICSI. RESULTS: Three hundred eighty six (61% oocytes) achieved metaphase II. The fertilization rate was 55%. We performed 59 embryo transfers (1.9 embryos per transfer) in 56 women, including 3 frozen embryo transfers. There were four ongoing pregnancies (5.3% per initiated cycle) leading to the birth of a healthy child at term. None of the patients developed OHSS. The ongoing pregnancy rate of the first conventional IVF/ICSI cycle after an unsuccessful IVM cycle was 44%, which was unexpectedly high. CONCLUSION: We concluded that IVM led to live births but with low effectiveness in our study. Earlier reported IVM success rates are higher which can be caused by a more extended experience in these centers with the intricate laboratory process. However, a possible selection bias in these studies cannot be ruled out. Furthermore, IVM might have a beneficial effect on further IVF/ICSI treatments due to its "ovarian drilling" effect.

10.
Cochrane Database Syst Rev ; 9: CD007287, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30199097

ABSTRACT

BACKGROUND: This is the second update of the review first published in the Cochrane Library (2010, Issue 2) and later updated (2014, Issue 9).Despite advances in chemotherapy, the prognosis of ovarian cancer remains poor. Antigen-specific active immunotherapy aims to induce tumour antigen-specific anti-tumour immune responses as an alternative treatment for ovarian cancer. OBJECTIVES: Primary objective• To assess the clinical efficacy of antigen-specific active immunotherapy for the treatment of ovarian cancer as evaluated by tumour response measured by Response Evaluation Criteria In Solid Tumors (RECIST) and/or cancer antigen (CA)-125 levels, response to post-immunotherapy treatment, and survival differences◦ In addition, we recorded the numbers of observed antigen-specific humoral and cellular responsesSecondary objective• To establish which combinations of immunotherapeutic strategies with tumour antigens provide the best immunological and clinical results SEARCH METHODS: For the previous version of this review, we performed a systematic search of the Cochrane Central Register of Controlled Trials (CENTRAL; 2009, Issue 3), in the Cochrane Library, the Cochrane Gynaecological Cancer Group Specialised Register, MEDLINE and Embase databases, and clinicaltrials.gov (1966 to July 2009). We also conducted handsearches of the proceedings of relevant annual meetings (1996 to July 2009).For the first update of this review, we extended the searches to October 2013, and for this update, we extended the searches to July 2017. SELECTION CRITERIA: We searched for randomised controlled trials (RCTs), as well as non-randomised studies (NRSs), that included participants with epithelial ovarian cancer, irrespective of disease stage, who were treated with antigen-specific active immunotherapy, irrespective of type of vaccine, antigen used, adjuvant used, route of vaccination, treatment schedule, and reported clinical or immunological outcomes. DATA COLLECTION AND ANALYSIS: Two reviews authors independently extracted the data. We evaluated the risk of bias for RCTs according to standard methodological procedures expected by Cochrane, and for NRSs by using a selection of quality domains deemed best applicable to the NRS. MAIN RESULTS: We included 67 studies (representing 3632 women with epithelial ovarian cancer). The most striking observations of this review address the lack of uniformity in conduct and reporting of early-phase immunotherapy studies. Response definitions show substantial variation between trials, which makes comparison of trial results unreliable. Information on adverse events is frequently limited. Furthermore, reports of both RCTs and NRSs frequently lack the relevant information necessary for risk of bias assessment. Therefore, we cannot rule out serious biases in most of the included trials. However, selection, attrition, and selective reporting biases are likely to have affected the studies included in this review. GRADE ratings were high only for survival; for other primary outcomes, GRADE ratings were very low.The largest body of evidence is currently available for CA-125-targeted antibody therapy (17 studies, 2347 participants; very low-certainty evidence). Non-randomised studies of CA-125-targeted antibody therapy suggest improved survival among humoral and/or cellular responders, with only moderate adverse events. However, four large randomised placebo-controlled trials did not show any clinical benefit, despite induction of immune responses in approximately 60% of participants. Time to relapse with CA-125 monoclonal antibody versus placebo, respectively, ranged from 10.3 to 18.9 months versus 10.3 to 13 months (six RCTs, 1882 participants; high-certainty evidence). Only one RCT provided data on overall survival, reporting rates of 80% in both treatment and placebo groups (three RCTs, 1062 participants; high-certainty evidence). Other small studies targeting many different tumour antigens have presented promising immunological results. As these strategies have not yet been tested in RCTs, no reliable inferences about clinical efficacy can be made. Given the promising immunological results and the limited side effects and toxicity reported, exploration of clinical efficacy in large well-designed RCTs may be worthwhile. AUTHORS' CONCLUSIONS: We conclude that despite promising immunological responses, no clinically effective antigen-specific active immunotherapy is yet available for ovarian cancer. Results should be interpreted cautiously, as review authors found a significant dearth of relevant information for assessment of risk of bias in both RCTs and NRSs.


Subject(s)
Immunotherapy, Active , Neoplasm Recurrence, Local , CA-125 Antigen , Female , Humans , Neoplasms, Glandular and Epithelial , Ovarian Neoplasms
11.
Acta Obstet Gynecol Scand ; 97(7): 808-815, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29582411

ABSTRACT

INTRODUCTION: Pregnancy after frozen-thawed embryo transfer (FET) is a multifactorial process. Although embryo quality is a key factor in determining pregnancy, other factors, including maternal determinants, are also considered to be predictive. Even though an association between endometrial thickness measured by transvaginal ultrasound and pregnancy rates has been reported in patients undergoing various assisted reproductive technology treatments, whether endometrial thickness predicts achieving pregnancy after natural cycle FET (NC-FET) remains unclear. MATERIAL AND METHODS: In this cohort study, 463 patients allocated to the modified NC-FET (mNC-FET) arm of a previously published randomized controlled trial were included. Monitoring in mNC-FET cycles consisted of regular ultrasound scans, measuring both dominant follicle and endometrial thickness. When the dominant follicle reached a size of 16-20 mm, an injection of human chorionic gonadotrophin was administered and embryo thawing and transfer planned. No minimal endometrial thickness was defined below which transfer was to be deferred. The primary endpoint was ongoing pregnancy rate. RESULTS: Overall, the ongoing pregnancy rate per started FET cycle was 12.5%. Multivariate regression analyses showed that embryo quality was the only significant predictor for ongoing pregnancy. Mean endometrial thickness did not differ between patients achieving ongoing pregnancy and those who did not (9.0 vs. 8.8 mm, p = 0.4). Comparable results were obtained with regard to clinical pregnancy, live birth and miscarriage rates. The area under the receiver operator curve was 0.5, indicating little discriminatory value of endometrial thickness. CONCLUSIONS: Given that endometrial thickness was not found to be predictive of pregnancy after mNC-FET, cancellation based on endometrial thickness alone may not be justified.


Subject(s)
Embryo Transfer/methods , Endometrium/anatomy & histology , Pregnancy Rate , Adolescent , Adult , Cryopreservation , Endometrium/diagnostic imaging , Female , Humans , Live Birth , Pregnancy , Pregnancy Outcome , Ultrasonography
12.
Reprod Biomed Online ; 34(5): 546-554, 2017 May.
Article in English | MEDLINE | ID: mdl-28319018

ABSTRACT

Recent studies suggest that elevated late follicular phase progesterone concentrations after ovarian stimulation for IVF may result in embryo-endometrial asynchrony, reducing the chance of successful implantation after fresh embryo transfer. It remains unclear to what extent elevated late follicular phase progesterone levels may occur in unstimulated cycles before frozen-thawed embryo transfer, or what affect they may have on outcomes. In this cohort study, 271 patients randomized to the modified natural cycle arm of a randomized controlled trial comparing two endometrial preparation regimens underwent late follicular phase progesterone and LH testing. A receiver operating characteristic curve was constructed to identify a progesterone cut-off level with the best predictive value for live birth (progesterone level ≥4.6 nmol/l). A total of 24.4% of patients revealed an isolated elevated serum progesterone of 4.6 nmol/l or greater, and 44.3% showed an elevated progesterone level in association with a rise in LH. Neither endocrine disruption affected outcomes, with live birth rates of 12.9% versus 10.6% (OR 0.6, 95% CI 0.19 to 1.9) and 11.9% versus 17.5% (OR 1.6, 95% CI 0.79 to 3.1), respectively. Whether monitoring of progesterone and LH in natural cycle frozen-thawed embryo transfer has added clinical value should studied further.


Subject(s)
Chorionic Gonadotropin/administration & dosage , Cryopreservation , Embryo Transfer , Progesterone/blood , Female , Humans
14.
JAMA ; 316(3): 300-12, 2016 Jul 19.
Article in English | MEDLINE | ID: mdl-27434442

ABSTRACT

IMPORTANCE: Previous studies of breast cancer risk after in vitro fertilization (IVF) treatment were inconclusive due to limited follow-up. OBJECTIVE: To assess long-term risk of breast cancer after ovarian stimulation for IVF. DESIGN, SETTING, AND PARTICIPANTS: Historical cohort (OMEGA study) with complete follow-up through December 2013 for 96% of the cohort. The cohort included 19,158 women who started IVF treatment between 1983 and 1995 (IVF group) and 5950 women starting other fertility treatments between 1980 and 1995 (non-IVF group) from all 12 IVF clinics in the Netherlands. The median age at end of follow-up was 53.8 years for the IVF group and 55.3 years for the non-IVF group. EXPOSURES: Information on ovarian stimulation for IVF, other fertility treatments, and potential confounders was collected from medical records and through mailed questionnaires. MAIN OUTCOMES AND MEASURES: Incidence of invasive and in situ breast cancers in women who underwent fertility treatments was obtained through linkage with the Netherlands Cancer Registry (1989-2013). Breast cancer risk in the IVF group was compared with risks in the general population (standardized incidence ratios [SIRs]) and the non-IVF group (hazard ratios [HRs]). RESULTS: Among 25,108 women (mean age at baseline, 32.8 years; mean number of IVF cycles, 3.6), 839 cases of invasive breast cancer and 109 cases of in situ breast cancer occurred after a median follow-up of 21.1 years. Breast cancer risk in IVF-treated women was not significantly different from that in the general population (SIR, 1.01 [95% CI, 0.93-1.09]) and from the risk in the non-IVF group (HR, 1.01 [95% CI, 0.86-1.19]). The cumulative incidences of breast cancer at age 55 were 3.0% for the IVF group and 2.9% for the non-IVF group (P = .85). The SIR did not increase with longer time since treatment (≥20 years) in the IVF group (0.92 [95% CI, 0.73-1.15]) or in the non-IVF group (1.03 [95% CI, 0.82-1.29]). Risk was significantly lower for those who underwent 7 or more IVF cycles (HR, 0.55 [95% CI, 0.39-0.77]) vs 1 to 2 IVF cycles and after poor response to the first IVF cycle (HR, 0.77 [95% CI, 0.61-0.96] for <4 vs ≥4 collected oocytes). CONCLUSIONS AND RELEVANCE: Among women undergoing fertility treatment in the Netherlands between 1980 and 1995, IVF treatment compared with non-IVF treatment was not associated with increased risk of breast cancer after a median follow-up of 21 years. Breast cancer risk among IVF-treated women was also not significantly different from that in the general population. These findings are consistent with absence of a significant increase in long-term risk of breast cancer among IVF-treated women.


Subject(s)
Breast Neoplasms/epidemiology , Fertilization in Vitro/adverse effects , Ovulation Induction/adverse effects , Adult , Cohort Studies , Female , Humans , Incidence , Middle Aged , Netherlands/epidemiology , Registries/statistics & numerical data , Risk Factors
15.
Cochrane Database Syst Rev ; 2: CD001838, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26892070

ABSTRACT

BACKGROUND: Intra-uterine insemination (IUI) is a widely used fertility treatment for couples with unexplained subfertility. Although IUI is less invasive and less expensive thAppendixan in vitro fertilisation (IVF), the safety of IUI in combination with ovarian hyperstimulation (OH) is debated. The main concern about IUI treatment with OH is the increase in multiple pregnancy rate. This is an update of a Cochrane review (Veltman-Verhulst 2012) originally published in 2006 and updated in 2012. OBJECTIVES: To determine whether, for couples with unexplained subfertility, IUI improves the live birth rate compared with timed intercourse (TI), or expectant management, both with and without ovarian hyperstimulation (OH). SEARCH METHODS: We searched the Cochrane Gynaecology and Fertility (formerly Cochrane Menstrual Disorders and Subfertility Group) Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, inception to Issue 11, 2015), Ovid MEDLINE, Ovid EMBASE, PsycINFO and trial registers, all from inception to December 2015 and reference lists of articles. Authors of identified studies were contacted for missing or unpublished data. The evidence is current to December 2015. SELECTION CRITERIA: Truly randomised controlled trial (RCT) comparisons of IUI versus TI, in natural or stimulated cycles. Only couples with unexplained subfertility were included. DATA COLLECTION AND ANALYSIS: Two review authors independently performed study selection, quality assessment and data extraction. We extracted outcomes, and pooled data and, where possible, we carried out subgroup and sensitivity analyses. MAIN RESULTS: We included 14 trials including 1867 women. IUI versus TI or expectant management both in natural cycleLive birth rate (all cycles)There was no evidence of a difference in cumulative live births between the two groups (Odds Ratio (OR) 1.60, 95% confidence interval (CI) 0.92 to 2.78; 1 RCT; n = 334; moderate quality evidence). The evidence suggested that if the chance of a live birth in TI was assumed to be 16%, that of IUI would be between 15% and 34%.Multiple pregnancy rateThere was no evidence of a difference in multiple pregnancy rate between the two treatment groups (OR 0.50, 95% CI 0.04 to 5.53; 1 RCT; n = 334; moderate quality evidence). IUI versus TI or expectant management both in stimulated cycleLive birth rate (all cycles)There was no evidence of a difference between the two treatment groups (OR 1.59, 95% CI 0.88 to 2.88; 2 RCTs; n = 208; I(2) = 72%; moderate quality evidence). The evidence suggested that if the chance of achieving a live birth in TI was assumed to be 26%, the chance of a live birth with IUI would be between 23% and 50%.Multiple pregnancy rateThere was no evidence of a difference in multiple pregnancy rates between the two treatment groups (OR 1.46, 95% CI 0.55 to 3.87; 4 RCTs, n = 316; I(2) = 0%; low quality evidence). IUI in a natural cycle versus IUI in a stimulated cycle Live birth rate (all cycles)An increase in live birth rate was found for women who were treated with IUI in a stimulated cycle compared with those who underwent IUI in natural cycle (OR 0.48, 95% CI 0.29 to 0.82; 4 RCTs, n = 396; I(2) = 0%; moderate quality evidence). The evidence suggested that if the chance of a live birth in IUI in a stimulated cycle was assumed to be 25%, the chance of a live birth in IUI in a natural cycle would be between 9% and 21%.Multiple pregnancy rateThere was no evidence of a difference in multiple pregnancy rate between the two treatment groups (OR 0.33, 95% CI 0.01 to 8.70; 2 RCTs; n = 65; low quality evidence). IUI in a stimulated cycle versus TI or expectant management in a natural cycleLive birth rate (all cycles)There was no evidence of a difference in live birth rate between the two treatment groups (OR 0.82, 95% CI 0.45 to 1.49; 1 RCT; n = 253; moderate quality evidence). The evidence suggested that if the chance of a live birth in TI or expectant management in a natural cycle was assumed to be 24%, the chance of a live birth in IUI in a stimulated cycle would be between 12% and 32%.Multiple pregnancy rateThere was no evidence of a difference in multiple pregnancy rate between the two treatment groups (OR 2.00, 95% CI 0.18 to 22.34; 2 RCTs; n = 304; moderate quality evidence). IUI in natural cycle versus TI or expectant management in stimulated cycle Live birth rate (all cycles)There was evidence of an increase in live births for IUI (OR 1.95, 95% CI 1.10 to 3.44; 1 RCT, n = 342; moderate quality evidence). The evidence suggested that if the chance of a live birth in TI in a stimulated cycle was assumed to be 13%, the chance of a live birth in IUI in a natural cycle would be between 14% and 34%.Multiple pregnancy rateThere was no evidence of a difference in multiple pregnancy rate between the groups (OR 1.05, 95% CI 0.07 to 16.90; 1 RCT; n = 342; moderate quality evidence).The quality of the evidence was assessed using GRADE methods. Quality ranged from low to moderate, the main limitation being imprecision in the findings for both live birth and multiple pregnancy.. AUTHORS' CONCLUSIONS: This systematic review did not find conclusive evidence of a difference in live birth or multiple pregnancy in most of the comparisons for couples with unexplained subfertility treated with intra-uterine insemination (IUI) when compared with timed intercourse (TI), both with and without ovarian hyperstimulation (OH). There were insufficient studies to allow for pooling of data on the important outcome measures for each of the comparisons.


Subject(s)
Infertility/therapy , Insemination, Artificial/methods , Ovulation Induction/methods , Pregnancy Rate , Coitus , Female , Fertile Period/physiology , Humans , Insemination, Artificial/adverse effects , Live Birth/epidemiology , Male , Ovulation Induction/adverse effects , Pregnancy , Pregnancy, Multiple , Randomized Controlled Trials as Topic , Time Factors
16.
Cochrane Database Syst Rev ; 2: CD000360, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26915339

ABSTRACT

BACKGROUND: Intra-uterine insemination (IUI), in vitro fertilisation (IVF) and intracytoplasmic sperm injection (ICSI) are frequently used fertility treatments for couples with male subfertility. The use of these treatments has been subject of discussion. Knowledge on the effectiveness of fertility treatments for male subfertility with different grades of severity is limited. Possibly, couples are exposed to unnecessary or ineffective treatments on a large scale. OBJECTIVES: To evaluate the effectiveness and safety of different fertility treatments (expectant management, timed intercourse (TI), IUI, IVF and ICSI) for couples whose subfertility appears to be due to abnormal sperm parameters. SEARCH METHODS: We searched for all publications that described randomised controlled trials (RCTs) of the treatment for male subfertility. We searched the Cochrane Menstrual Disorders and Subfertility Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, CINAHL, PsycINFO and the National Research Register from inception to 14 April 2015, and web-based trial registers from January 1985 to April 2015. We applied no language restrictions. We checked all references in the identified trials and background papers and contacted authors to identify relevant published and unpublished data. SELECTION CRITERIA: We included RCTs comparing different treatment options for male subfertility. These were expectant management, TI (with or without ovarian hyperstimulation (OH)), IUI (with or without OH), IVF and ICSI. We included only couples with abnormal sperm parameters. DATA COLLECTION AND ANALYSIS: Two review authors independently selected the studies, extracted data and assessed risk of bias. They resolved disagreements by discussion with the rest of the review authors. We performed statistical analyses in accordance with the guidelines for statistical analysis developed by The Cochrane Collaboration. The quality of the evidence was rated using the GRADE methods. Primary outcomes were live birth and ovarian hyperstimulation syndrome (OHSS) per couple randomised. MAIN RESULTS: The review included 10 RCTs (757 couples). The quality of the evidence was low or very low for all comparisons. The main limitations in the evidence were failure to describe study methods, serious imprecision and inconsistency. IUI versus TI (five RCTs)Two RCTs compared IUI with TI in natural cycles. There were no data on live birth or OHSS. We found no evidence of a difference in pregnancy rates (2 RCTs, 62 couples: odds ratio (OR) 4.57, 95% confidence interval (CI) 0.21 to 102, very low quality evidence; there were no events in one of the studies).Three RCTs compared IUI with TI both in cycles with OH. We found no evidence of a difference in live birth rates (1 RCT, 81 couples: OR 0.89, 95% CI 0.30 to 2.59; low quality evidence) or pregnancy rates (3 RCTs, 202 couples: OR 1.51, 95% CI 0.74 to 3.07; I(2) = 11%, very low quality evidence). One RCT reported data on OHSS. None of the 62 women had OHSS.One RCT compared IUI in cycles with OH with TI in natural cycles. We found no evidence of a difference in live birth rates (1 RCT, 44 couples: OR 3.14, 95% CI 0.12 to 81.35; very low quality evidence). Data on OHSS were not available. IUI in cycles with OH versus IUI in natural cycles (five RCTs)We found no evidence of a difference in live birth rates (3 RCTs, 346 couples: OR 1.34, 95% CI 0.77 to 2.33; I(2) = 0%, very low quality evidence) and pregnancy rates (4 RCTs, 399 couples: OR 1.68, 95% CI 1.00 to 2.82; I(2) = 0%, very low quality evidence). There were no data on OHSS. IVF versus IUI in natural cycles or cycles with OH (two RCTs)We found no evidence of a difference in live birth rates between IVF versus IUI in natural cycles (1 RCT, 53 couples: OR 0.77, 95% CI 0.25 to 2.35; low quality evidence) or IVF versus IUI in cycles with OH (2 RCTs, 86 couples: OR 1.03, 95% CI 0.43 to 2.45; I(2) = 0%, very low quality evidence). One RCT reported data on OHSS. None of the women had OHSS.Overall, we found no evidence of a difference between any of the groups in rates of live birth, pregnancy or adverse events (multiple pregnancy, miscarriage). However, most of the evidence was very low quality.There were no studies on IUI in natural cycles versus TI in stimulated cycles, IVF versus TI, ICSI versus TI, ICSI versus IUI (with OH) or ICSI versus IVF. AUTHORS' CONCLUSIONS: We found insufficient evidence to determine whether there was any difference in safety and effectiveness between different treatments for male subfertility. More research is needed.


Subject(s)
Birth Rate , Coitus , Fertilization , Infertility, Male , Insemination, Artificial/methods , Ovulation Induction , Female , Humans , Male , Pregnancy , Randomized Controlled Trials as Topic
17.
Hum Fertil (Camb) ; 18(4): 238-47, 2015.
Article in English | MEDLINE | ID: mdl-26167659

ABSTRACT

The Internet is expected to innovate healthcare, in particular patient-centredness of care. Within fertility care, information provision, communication with healthcare providers and support from peers are important components of patient-centred care. An online infertility community added to an in vitro fertilisation or IVF clinic's practice provides tools to healthcare providers to meet these. This study's online infertility community facilitates peer-to-peer support, information provision to patients and patient provider communication within one clinic. Unfortunately, these interventions often fail to become part of clinical routines. The analysis of a first introduction into usual care can provide lessons for the implementation in everyday health practice. The aim was to explore experiences of professionals and patients with the implementation of an infertility community into a clinic's care practice. We performed semi-structured interviews with both professionals and patients to collect these experiences. These interviews were analyzed using the Normalisation Process Model. Assignment of a community manager, multidisciplinary division of tasks, clear instructions to staff in advance and periodical evaluations could contribute to the integration of this online community. Interviews with patients provided insights into the possible impact on daily care. This study provides lessons to healthcare providers on the implementation of an online infertility community into their practice.


Subject(s)
Fertilization in Vitro , Health Knowledge, Attitudes, Practice , Infertility/therapy , Internet , Social Networking , Female , Humans , Infertility/psychology , Models, Theoretical , Patient-Centered Care
18.
Cochrane Database Syst Rev ; (12): CD006942, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-25528596

ABSTRACT

BACKGROUND: In many countries intrauterine insemination (IUI) is the treatment of first choice for a subfertile couple when the infertility work up reveals an ovulatory cycle, at least one open Fallopian tube and sufficient spermatozoa. The final goal of this treatment is to achieve a pregnancy and deliver a healthy (singleton) live birth. The probability of conceiving with IUI depends on various factors including age of the couple, type of subfertility, ovarian stimulation and the timing of insemination. IUI should logically be performed around the moment of ovulation. Since spermatozoa and oocytes have only limited survival time correct timing of the insemination is essential. As it is not known which technique of timing for IUI results in the best treatment outcome, we compared different techniques for timing IUI and different time intervals. OBJECTIVES: To evaluate the effectiveness of different synchronisation methods in natural and stimulated cycles for IUI in subfertile couples. SEARCH METHODS: We searched for all publications which described randomised controlled trials of the timing of IUI. We searched the Cochrane Menstrual Disorders and Subfertility Group Specialised Register, Cochrane Central Register of Controlled Trials (CENTRAL) (1966 to October 2014), EMBASE (1974 to October 2014), MEDLINE (1966 to October 2014) and PsycINFO (inception to October 2014) electronic databases and prospective trial registers. Furthermore, we checked the reference lists of all obtained studies and performed a handsearch of conference abstracts. SELECTION CRITERIA: Randomised controlled trials (RCTs) comparing different timing methods for IUI were included. The following interventions were evaluated: detection of luteinising hormone (LH) in urine or blood, single test; human chorionic gonadotropin (hCG) administration; combination of LH detection and hCG administration; basal body temperature chart; ultrasound detection of ovulation; gonadotropin-releasing hormone (GnRH) agonist administration; or other timing methods. DATA COLLECTION AND ANALYSIS: Two review authors independently selected the trials, extracted the data and assessed study risk of bias. We performed statistical analyses in accordance with the guidelines for statistical analysis developed by The Cochrane Collaboration. The overall quality of the evidence was assessed using GRADE methods. MAIN RESULTS: Eighteen RCTs were included in the review, of which 14 were included in the meta-analyses (in total 2279 couples). The evidence was current to October 2013. The quality of the evidence was low or very low for most comparisons . The main limitations in the evidence were failure to describe study methods, serious imprecision and attrition bias.Ten RCTs compared different methods of timing for IUI. We found no evidence of a difference in live birth rates between hCG injection versus LH surge (odds ratio (OR) 1.0, 95% confidence interval (CI) 0.06 to 18, 1 RCT, 24 women, very low quality evidence), urinary hCG versus recombinant hCG (OR 1.17, 95% CI 0.68 to 2.03, 1 RCT, 284 women, low quality evidence) or hCG versus GnRH agonist (OR 1.04, 95% CI 0.42 to 2.6, 3 RCTS, 104 women, I(2) = 0%, low quality evidence).Two RCTs compared the optimum time interval from hCG injection to IUI, comparing different time frames that ranged from 24 hours to 48 hours. Only one of these studies reported live birth rates, and found no difference between the groups (OR 0.52, 95% CI 0.27 to 1.00, 1 RCT, 204 couples). One study compared early versus late hCG administration and one study compared different dosages of hCG, but neither reported the primary outcome of live birth.We found no evidence of a difference between any of the groups in rates of pregnancy or adverse events (multiple pregnancy, miscarriage, ovarian hyperstimulation syndrome (OHSS)). However, most of these data were very low quality. AUTHORS' CONCLUSIONS: There is insufficient evidence to determine whether there is any difference in safety and effectiveness between different methods of synchronization of ovulation and insemination. More research is needed.


Subject(s)
Infertility/therapy , Insemination, Artificial/methods , Adult , Body Temperature , Chorionic Gonadotropin/administration & dosage , Female , Gonadotropin-Releasing Hormone/agonists , Humans , Luteinizing Hormone/blood , Luteinizing Hormone/urine , Male , Ovulation Detection/methods , Randomized Controlled Trials as Topic , Time Factors , Young Adult
19.
Cochrane Database Syst Rev ; (9): CD007287, 2014 Sep 17.
Article in English | MEDLINE | ID: mdl-25229990

ABSTRACT

BACKGROUND: Despite advances in chemotherapy, prognosis of ovarian cancer remains poor. Antigen-specific active immunotherapy aims to induce tumour-antigen-specific anti-tumour immune responses as an alternative treatment for ovarian cancer. OBJECTIVES: To assess the feasibility of antigen-specific active immunotherapy for ovarian cancer. Primary outcomes are clinical efficacy and antigen-specific immunogenicity with carrier-specific immunogenicity and side effects as secondary outcomes. SEARCH METHODS: For the previous version of this review, a systematic search of the Cochrane Central Register of Controlled Trials (CENTRAL) 2009, Issue 3, Cochrane Gynaecological Cancer Group Specialized Register, MEDLINE and EMBASE databases and clinicaltrials.gov was performed (1966 to July 2009). We conducted handsearches of the proceedings of relevant annual meetings (1996 to July 2009).For this update of the review the searches were extended to October 2013. SELECTION CRITERIA: Randomised controlled trials (RCTs), as well as non-randomised non-controlled studies that included participants with epithelial ovarian cancer, irrespective of stage of disease, and treated with antigen-specific active immunotherapy, irrespective of type of vaccine, antigen used, adjuvant used, route of vaccination, schedule, and reported clinical or immunological outcomes. DATA COLLECTION AND ANALYSIS: Two reviews authors independently performed the data extraction. Risk of bias was evaluated for RCTs according to standard methodological procedures expected by The Cochrane Collabororation or for non-RCTs using a selection of quality domains deemed best applicable to the non-randomised non-controlled studies. MAIN RESULTS: Fifty-five studies were included (representing 3051 women with epithelial ovarian cancer). Response definitions showed substantial variation between trials, which makes comparison of trial results unreliable. Information on adverse events was frequently limited. Furthermore, reports of both RCTs and non-RCTs frequently lacked the relevant information necessary to assess risk of bias. Serious biases in most of the included trials can therefore not be ruled out.The largest body of evidence is currently available for CA-125 targeted antibody therapy (16 studies: 2339 participants). Non-RCTs of CA-125 targeted antibody therapy suggests increased survival in humoral and/or cellular responders. However, four large randomised placebo-controlled trials did not show any clinical benefit despite induction of immune responses in approximately 60% of participants.Other small studies targeting many different tumour antigens showed promising immunological results. As these strategies have not yet been tested in RCTs, no reliable inferences about clinical efficacy can be made. Given the promising immunological results, limited side effects and toxicity exploration of clinical efficacy in large well-designed RCTs may be worthwhile. AUTHORS' CONCLUSIONS: We conclude that despite promising immunological responses, no clinically effective antigen-specific active immunotherapy is yet available for ovarian cancer. Results should be interpreted cautiously as there was a significant lack of relevant information for the assessment of risk of bias in both RCTs and non-RCTs.


Subject(s)
Immunotherapy, Active/methods , Neoplasms, Glandular and Epithelial/therapy , Ovarian Neoplasms/therapy , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/therapeutic use , CA-125 Antigen/immunology , Carcinoma, Ovarian Epithelial , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Female , Humans , Immunotherapy, Active/adverse effects , Molecular Targeted Therapy/methods , Neoplasms, Glandular and Epithelial/immunology , Ovarian Neoplasms/immunology , Randomized Controlled Trials as Topic
20.
Cochrane Database Syst Rev ; (10): CD001502, 2013 Oct 30.
Article in English | MEDLINE | ID: mdl-24174382

ABSTRACT

BACKGROUND: Intrauterine insemination (IUI) is a common treatment for couples with subfertility that does not involve the fallopian tubes. It is used to bring the sperm close to the released oocyte. Another method of introducing sperm is fallopian tube sperm perfusion (FSP). Fallopian tube sperm perfusion ensures the presence of higher sperm densities in the fallopian tubes at the time of ovulation than does standard IUI. These treatments are often used in combination with ovarian hyperstimulation. OBJECTIVES: To compare intrauterine insemination versus fallopian tube sperm perfusion in the treatment of non-tubal subfertility, for live birth and pregnancy outcomes. SEARCH METHODS: We searched the Menstrual Disorders and Subfertility Group Trials Register, MEDLINE, CINAHL and EMBASE from inception to September 2013. We also searched study reference lists and trial registers. SELECTION CRITERIA: Randomised controlled trials (RCTs) comparing IUI with FSP in couples with non-tubal subfertility were included. DATA COLLECTION AND ANALYSIS: Two review authors independently selected studies for inclusion, assessed study quality and extracted the data. If studies were sufficiently similar, data were combined using a fixed-effect model to calculate pooled odds ratios (ORs) and 95% confidence intervals (CIs). A random-effects model was used if substantial statistical heterogeneity was detected. Studies that included participants with unexplained or mixed (non-tubal) subfertility were analysed separately from studies restricted to participants with mild or moderate male factor subfertility. The overall quality of evidence for the main outcomes was summarised using Grading of Recommendations Assessment, Development and Evaluation (GRADE) criteria. MAIN RESULTS: The review included 16 RCTs. Fourteen RCTs (1745 women) were included in the meta-analysis. Only three studies reported live birth per couple. No evidence of a statistically significant difference was noted between IUI and FSP in live birth (OR 0.94, 95% CI 0.59 to 1.49, three RCTs, 633 women, I(2) = 0%, low-quality evidence) or clinical pregnancy (OR 0.75, 95% CI 0.49 to 1.12, 14 RCTs, 1745 women, I(2) = 52%, low-quality evidence). These findings suggest that for a couple with a 13% chance of live birth using FSP, the chance when using IUI will be between 8% and 19%; and that for a couple with a 19% chance of pregnancy using FSP, the chance of pregnancy when using IUI will be between 10% and 20%. Nor was evidence found of a statistically significant difference between IUI and FSP in per-pregnancy of multiple pregnancy (OR 0.96, 95% CI 0.44 to 2.07, eight RCTs, 197 women, I(2) = 0%, low-quality evidence), miscarriage (OR 1.23, 95% CI 0.60 to 2.53, seven RCTs, 199 women, I(2) = 0%, low-quality evidence) or ectopic pregnancy (OR 1.71, 95% CI 0.42 to 6.88, four RCTs, 111 women, I(2) = 0%, very low quality evidence). Substantial heterogeneity was noted for the outcome of clinical pregnancy (I(2) = 54%), for which no clear explanation was provided. AUTHORS' CONCLUSIONS: Currently no clear evidence suggests any difference between IUI and FSP with respect to their effectiveness and safety for treating couples with non-tubal subfertility. However, a high level of uncertainty is evident in the findings, and additional research may be useful.


Subject(s)
Fallopian Tubes , Pregnancy Outcome , Reproductive Techniques, Assisted , Female , Gamete Intrafallopian Transfer/methods , Humans , Infertility, Female , Live Birth , Pregnancy , Randomized Controlled Trials as Topic , Sperm Count
SELECTION OF CITATIONS
SEARCH DETAIL
...