Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
JACC Case Rep ; 7: 101698, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36776791

ABSTRACT

Myoepithelioma of the soft tissue is a rare entity that can mimic myxoma when presenting within the heart. We present a case where cardiopulmonary bypass venous cannula extraction catheter removal of an intracardiac myoepithelioma was attempted with minimal debulking and subsequently required minimally invasive open-heart surgery with cardiopulmonary bypass. (Level of Difficulty: Advanced.).

2.
PLoS One ; 17(11): e0277300, 2022.
Article in English | MEDLINE | ID: mdl-36378672

ABSTRACT

BACKGROUND: Phase space is a mechanical systems approach and large-scale data representation of an object in 3-dimensional space. Whether such techniques can be applied to predict left ventricular pressures non-invasively and at the point-of-care is unknown. OBJECTIVE: This study prospectively validated a phase space machine-learned approach based on a novel electro-mechanical pulse wave method of data collection through orthogonal voltage gradient (OVG) and photoplethysmography (PPG) for the prediction of elevated left ventricular end diastolic pressure (LVEDP). METHODS: Consecutive outpatients across 15 US-based healthcare centers with symptoms suggestive of coronary artery disease were enrolled at the time of elective cardiac catheterization and underwent OVG and PPG data acquisition immediately prior to angiography with signals paired with LVEDP (IDENTIFY; NCT #03864081). The primary objective was to validate a ML algorithm for prediction of elevated LVEDP using a definition of ≥25 mmHg (study cohort) and normal LVEDP ≤ 12 mmHg (control cohort), using AUC as the measure of diagnostic accuracy. Secondary objectives included performance of the ML predictor in a propensity matched cohort (age and gender) and performance for an elevated LVEDP across a spectrum of comparative LVEDP (<12 through 24 at 1 mmHg increments). Features were extracted from the OVG and PPG datasets and were analyzed using machine-learning approaches. RESULTS: The study cohort consisted of 684 subjects stratified into three LVEDP categories, ≤12 mmHg (N = 258), LVEDP 13-24 mmHg (N = 347), and LVEDP ≥25 mmHg (N = 79). Testing of the ML predictor demonstrated an AUC of 0.81 (95% CI 0.76-0.86) for the prediction of an elevated LVEDP with a sensitivity of 82% and specificity of 68%, respectively. Among a propensity matched cohort (N = 79) the ML predictor demonstrated a similar result AUC 0.79 (95% CI: 0.72-0.8). Using a constant definition of elevated LVEDP and varying the lower threshold across LVEDP the ML predictor demonstrated and AUC ranging from 0.79-0.82. CONCLUSION: The phase space ML analysis provides a robust prediction for an elevated LVEDP at the point-of-care. These data suggest a potential role for an OVG and PPG derived electro-mechanical pulse wave strategy to determine if LVEDP is elevated in patients with symptoms suggestive of cardiac disease.


Subject(s)
Ventricular Dysfunction, Left , Humans , Ventricular Dysfunction, Left/diagnosis , Blood Pressure , Point-of-Care Systems , Pulse Wave Analysis , Machine Learning , Ventricular Function, Left , Ventricular Pressure , Stroke Volume
3.
Front Cardiovasc Med ; 9: 980625, 2022.
Article in English | MEDLINE | ID: mdl-36211581

ABSTRACT

Introduction: Elevated left ventricular end diastolic pressure (LVEDP) is a consequence of compromised left ventricular compliance and an important measure of myocardial dysfunction. An algorithm was developed to predict elevated LVEDP utilizing electro-mechanical (EM) waveform features. We examined the hierarchical clustering of selected features developed from these EM waveforms in order to identify important patient subgroups and assess their possible prognostic significance. Materials and methods: Patients presenting with cardiovascular symptoms (N = 396) underwent EM data collection and direct LVEDP measurement by left heart catheterization. LVEDP was classified as non-elevated ( ≤ 12 mmHg) or elevated (≥25 mmHg). The 30 most contributive features to the algorithm output were extracted from EM data and input to an unsupervised hierarchical clustering algorithm. The resultant dendrogram was divided into five clusters, and patient metadata overlaid. Results: The cluster with highest LVEDP (cluster 1) was most dissimilar from the lowest LVEDP cluster (cluster 5) in both clustering and with respect to clinical characteristics. In contrast to the cluster demonstrating the highest percentage of elevated LVEDP patients, the lowest was predominantly non-elevated LVEDP, younger, lower BMI, and males with a higher rate of significant coronary artery disease (CAD). The next adjacent cluster (cluster 2) to that of the highest LVEDP (cluster 1) had the second lowest LVEDP of all clusters. Cluster 2 differed from Cluster 1 primarily based on features extracted from the electrical data, and those that quantified predictability and variability of the signal. There was a low predictability and high variability in the highest LVEDP cluster 1, and the opposite in adjacent cluster 2. Conclusion: This analysis identified subgroups of patients with varying degrees of LVEDP elevation based on waveform features. An approach to stratify movement between clusters and possible progression of myocardial dysfunction may include changes in features that differentiate clusters; specifically, reductions in electrical signal predictability and increases in variability. Identification of phenotypes of myocardial dysfunction evidenced by elevated LVEDP and knowledge of factors promoting transition to clusters with higher levels of left ventricular filling pressures could permit early risk stratification and improve patient selection for novel therapeutic interventions.

4.
Cardiovasc Revasc Med ; 40S: 182-183, 2022 07.
Article in English | MEDLINE | ID: mdl-35058157

ABSTRACT

Translesional coronary pressure measures the hemodynamic significance of epicardial coronary artery disease. Angiographic-physiologic mismatching is attributed mainly to imaging limitations. We present a patient with extreme visual-physiologic functional mismatch and a markedly elevated left ventricular end diastolic pressure (LVEDP) as a potential contributory mechanism.


Subject(s)
Coronary Artery Disease , Hemodynamics , Angiography , Blood Pressure , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Humans
5.
Per Med ; 17(4): 307-316, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32588726

ABSTRACT

The rapid development of digital health devices has enabled patients to engage in their care to an unprecedented degree and holds the possibility of significantly improving the diagnosis, treatment and monitoring of many medical conditions. Combined with the emergence of artificial intelligence algorithms, biometric datasets produced from these digital health devices present new opportunities to create precision-based, personalized approaches for healthcare delivery. For effective implementation of such innovations to patient care, clinicians will require an understanding of the types of datasets produced from digital health technologies; the types of analytic methods including feature selection, convolution neural networking, and deep learning that can be used to analyze digital data; and how the interpretation of these findings are best translated to patient care. In this perspective, we aim to provide the groundwork for clinicians to be able to apply artificial intelligence to this transformation of healthcare.


Subject(s)
Delivery of Health Care/methods , Precision Medicine/methods , Wearable Electronic Devices/trends , Algorithms , Artificial Intelligence , Delivery of Health Care/trends , Humans , Machine Learning , Precision Medicine/trends
6.
J Clin Invest ; 124(12): 5411-23, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25365225

ABSTRACT

Triple-negative breast cancers (TNBCs) are a heterogeneous set of cancers that are defined by the absence of hormone receptor expression and HER2 amplification. Here, we found that inducible IκB kinase-related (IKK-related) kinase IKBKE expression and JAK/STAT pathway activation compose a cytokine signaling network in the immune-activated subset of TNBC. We found that treatment of cultured IKBKE-driven breast cancer cells with CYT387, a potent inhibitor of TBK1/IKBKE and JAK signaling, impairs proliferation, while inhibition of JAK alone does not. CYT387 treatment inhibited activation of both NF-κB and STAT and disrupted expression of the protumorigenic cytokines CCL5 and IL-6 in these IKBKE-driven breast cancer cells. Moreover, in 3D culture models, the addition of CCL5 and IL-6 to the media not only promoted tumor spheroid dispersal but also stimulated proliferation and migration of endothelial cells. Interruption of cytokine signaling by CYT387 in vivo impaired the growth of an IKBKE-driven TNBC cell line and patient-derived xenografts (PDXs). A combination of CYT387 therapy with a MEK inhibitor was particularly effective, abrogating tumor growth and angiogenesis in an aggressive PDX model of TNBC. Together, these findings reveal that IKBKE-associated cytokine signaling promotes tumorigenicity of immune-driven TNBC and identify a potential therapeutic strategy using clinically available compounds.


Subject(s)
Breast Neoplasms/metabolism , Chemokine CCL5/metabolism , I-kappa B Kinase/metabolism , Interleukin-6/metabolism , Neoplasm Proteins/metabolism , Signal Transduction , Animals , Benzamides/pharmacology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Chemokine CCL5/genetics , Female , Humans , I-kappa B Kinase/genetics , Interleukin-6/genetics , Janus Kinases/antagonists & inhibitors , Janus Kinases/genetics , Janus Kinases/metabolism , Mice , NF-kappa B/genetics , NF-kappa B/metabolism , Neoplasm Proteins/genetics , Pyrimidines/pharmacology , Xenograft Model Antitumor Assays
7.
Genes Dev ; 28(5): 479-90, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24589777

ABSTRACT

Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) have been discovered in several cancer types and cause the neurometabolic syndrome D2-hydroxyglutaric aciduria (D2HGA). The mutant enzymes exhibit neomorphic activity resulting in production of D2-hydroxyglutaric acid (D-2HG). To study the pathophysiological consequences of the accumulation of D-2HG, we generated transgenic mice with conditionally activated IDH2(R140Q) and IDH2(R172K) alleles. Global induction of mutant IDH2 expression in adults resulted in dilated cardiomyopathy, white matter abnormalities throughout the central nervous system (CNS), and muscular dystrophy. Embryonic activation of mutant IDH2 resulted in more pronounced phenotypes, including runting, hydrocephalus, and shortened life span, recapitulating the abnormalities observed in D2HGA patients. The diseased hearts exhibited mitochondrial damage and glycogen accumulation with a concordant up-regulation of genes involved in glycogen biosynthesis. Notably, mild cardiac hypertrophy was also observed in nude mice implanted with IDH2(R140Q)-expressing xenografts, suggesting that 2HG may potentially act in a paracrine fashion. Finally, we show that silencing of IDH2(R140Q) in mice with an inducible transgene restores heart function by lowering 2HG levels. Together, these findings indicate that inhibitors of mutant IDH2 may be beneficial in the treatment of D2HGA and suggest that 2HG produced by IDH mutant tumors has the potential to provoke a paraneoplastic condition.


Subject(s)
Cardiomyopathies/genetics , Glutarates/metabolism , Isocitrate Dehydrogenase/genetics , Mutation , Neurodegenerative Diseases/genetics , Animals , Cardiomyopathies/enzymology , Cardiomyopathies/pathology , Cell Line , Gene Expression Profiling , Gene Expression Regulation, Developmental , Heart/physiopathology , Humans , Isocitrate Dehydrogenase/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Neurodegenerative Diseases/enzymology , Neurodegenerative Diseases/pathology
8.
Cancer Discov ; 4(4): 452-65, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24444711

ABSTRACT

Although the roles of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling in KRAS-driven tumorigenesis are well established, KRAS activates additional pathways required for tumor maintenance, the inhibition of which are likely to be necessary for effective KRAS-directed therapy. Here, we show that the IκB kinase (IKK)-related kinases Tank-binding kinase-1 (TBK1) and IKKε promote KRAS-driven tumorigenesis by regulating autocrine CCL5 and interleukin (IL)-6 and identify CYT387 as a potent JAK/TBK1/IKKε inhibitor. CYT387 treatment ablates RAS-associated cytokine signaling and impairs Kras-driven murine lung cancer growth. Combined CYT387 treatment and MAPK pathway inhibition induces regression of aggressive murine lung adenocarcinomas driven by Kras mutation and p53 loss. These observations reveal that TBK1/IKKε promote tumor survival by activating CCL5 and IL-6 and identify concurrent inhibition of TBK1/IKKε, Janus-activated kinase (JAK), and MEK signaling as an effective approach to inhibit the actions of oncogenic KRAS.


Subject(s)
Autocrine Communication , Benzamides/pharmacology , Carcinoma, Non-Small-Cell Lung/pathology , Pyrimidines/pharmacology , Signal Transduction/drug effects , ras Proteins/genetics , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Chemokine CCL5/metabolism , Human Umbilical Vein Endothelial Cells , Humans , I-kappa B Proteins/metabolism , Interleukin-6/metabolism , Mice , Neoplasms, Experimental , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism
9.
Cancer Discov ; 3(12): 1355-63, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24078774

ABSTRACT

UNLABELLED: The success in lung cancer therapy with programmed death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between EGF receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, CTL antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased CTLs and increased markers of T-cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T-cell function and lowering the levels of tumor-promoting cytokines. Expression of mutant EGFR in bronchial epithelial cells induced PD-L1, and PD-L1 expression was reduced by EGFR inhibitors in non-small cell lung cancer cell lines with activated EGFR. These data suggest that oncogenic EGFR signaling remodels the tumor microenvironment to trigger immune escape and mechanistically link treatment response to PD-1 inhibition. SIGNIFICANCE: We show that autochthonous EGFR-driven lung tumors inhibit antitumor immunity by activating the PD-1/PD-L1 pathway to suppress T-cell function and increase levels of proinflammatory cytokines. These findings indicate that EGFR functions as an oncogene through non-cell-autonomous mechanisms and raise the possibility that other oncogenes may drive immune escape.


Subject(s)
B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/immunology , Cytokines/metabolism , ErbB Receptors/metabolism , Lung Neoplasms/immunology , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes/immunology , Tumor Escape , Animals , B7-H1 Antigen/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oncogenes , Programmed Cell Death 1 Receptor/genetics , Signal Transduction , Tumor Microenvironment
10.
Clin Cancer Res ; 19(22): 6183-92, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24045185

ABSTRACT

PURPOSE: Amplification of MYC is one of the most common genetic alterations in lung cancer, contributing to a myriad of phenotypes associated with growth, invasion, and drug resistance. Murine genetics has established both the centrality of somatic alterations of Kras in lung cancer, as well as the dependency of mutant Kras tumors on MYC function. Unfortunately, drug-like small-molecule inhibitors of KRAS and MYC have yet to be realized. The recent discovery, in hematologic malignancies, that bromodomain and extra-terminal (BET) bromodomain inhibition impairs MYC expression and MYC transcriptional function established the rationale of targeting KRAS-driven non-small cell lung cancer (NSCLC) with BET inhibition. EXPERIMENTAL DESIGN: We performed functional assays to evaluate the effects of JQ1 in genetically defined NSCLC cell lines harboring KRAS and/or LKB1 mutations. Furthermore, we evaluated JQ1 in transgenic mouse lung cancer models expressing mutant kras or concurrent mutant kras and lkb1. Effects of bromodomain inhibition on transcriptional pathways were explored and validated by expression analysis. RESULTS: Although JQ1 is broadly active in NSCLC cells, activity of JQ1 in mutant KRAS NSCLC is abrogated by concurrent alteration or genetic knockdown of LKB1. In sensitive NSCLC models, JQ1 treatment results in the coordinate downregulation of the MYC-dependent transcriptional program. We found that JQ1 treatment produces significant tumor regression in mutant kras mice. As predicted, tumors from mutant kras and lkb1 mice did not respond to JQ1. CONCLUSION: Bromodomain inhibition comprises a promising therapeutic strategy for KRAS-mutant NSCLC with wild-type LKB1, via inhibition of MYC function. Clinical studies of BET bromodomain inhibitors in aggressive NSCLC will be actively pursued. Clin Cancer Res; 19(22); 6183-92. ©2013 AACR.


Subject(s)
Azepines/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Nuclear Proteins/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Transcription Factors/antagonists & inhibitors , Triazoles/pharmacology , AMP-Activated Protein Kinases , Animals , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Lung Neoplasms/genetics , Mice , Mice, Knockout , Nuclear Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/biosynthesis , Proto-Oncogene Proteins c-myc/genetics , RNA Interference , RNA, Small Interfering , Signal Transduction/drug effects , Transcription Factors/genetics
11.
Cancer Discov ; 3(8): 870-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23715154

ABSTRACT

The LKB1/STK11 tumor suppressor encodes a serine/threonine kinase, which coordinates cell growth, polarity, motility, and metabolism. In non-small cell lung carcinoma, LKB1 is somatically inactivated in 25% to 30% of cases, often concurrently with activating KRAS mutations. Here, we used an integrative approach to define novel therapeutic targets in KRAS-driven LKB1-mutant lung cancers. High-throughput RNA interference screens in lung cancer cell lines from genetically engineered mouse models driven by activated KRAS with or without coincident Lkb1 deletion led to the identification of Dtymk, encoding deoxythymidylate kinase (DTYMK), which catalyzes dTTP biosynthesis, as synthetically lethal with Lkb1 deficiency in mouse and human lung cancer lines. Global metabolite profiling showed that Lkb1-null cells had a striking decrease in multiple nucleotide metabolites as compared with the Lkb1-wild-type cells. Thus, LKB1-mutant lung cancers have deficits in nucleotide metabolism that confer hypersensitivity to DTYMK inhibition, suggesting that DTYMK is a potential therapeutic target in this aggressive subset of tumors.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Nucleoside-Phosphate Kinase/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell Death , Cell Line, Tumor , DNA Damage , DNA Replication , Gene Knockdown Techniques , Genomics , High-Throughput Screening Assays , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Metabolomics , Mice , Models, Genetic , Molecular Targeted Therapy , Nucleoside-Phosphate Kinase/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , RNA Interference , Thymine Nucleotides/metabolism
12.
Cancer Cell ; 23(1): 121-8, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23245996

ABSTRACT

KRAS is the most commonly mutated oncogene, yet no effective targeted therapies exist for KRAS mutant cancers. We developed a pooled shRNA-drug screen strategy to identify genes that, when inhibited, cooperate with MEK inhibitors to effectively treat KRAS mutant cancer cells. The anti-apoptotic BH3 family gene BCL-XL emerged as a top hit through this approach. ABT-263 (navitoclax), a chemical inhibitor that blocks the ability of BCL-XL to bind and inhibit pro-apoptotic proteins, in combination with a MEK inhibitor led to dramatic apoptosis in many KRAS mutant cell lines from different tissue types. This combination caused marked in vivo tumor regressions in KRAS mutant xenografts and in a genetically engineered KRAS-driven lung cancer mouse model, supporting combined BCL-XL/MEK inhibition as a potential therapeutic approach for KRAS mutant cancers.


Subject(s)
Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , MAP Kinase Kinase Kinases/antagonists & inhibitors , Neoplasms/drug therapy , Proto-Oncogene Proteins p21(ras)/genetics , Sulfonamides/pharmacology , bcl-X Protein/antagonists & inhibitors , Aniline Compounds/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Benzimidazoles/therapeutic use , Drug Screening Assays, Antitumor , Humans , Mice , Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Sulfonamides/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...