Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(4): 2631-2666, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38330278

ABSTRACT

Citron kinase (CITK) is an AGC-family serine/threonine kinase that regulates cytokinesis. Despite knockdown experiments implicating CITK as an anticancer target, no selective CITK inhibitors exist. We transformed a previously reported kinase inhibitor with weak off-target CITK activity into a first-in-class CITK chemical probe, C3TD879. C3TD879 is a Type I kinase inhibitor which potently inhibits CITK catalytic activity (biochemical IC50 = 12 nM), binds directly to full-length human CITK in cells (NanoBRET Kd < 10 nM), and demonstrates favorable DMPK properties for in vivo evaluation. We engineered exquisite selectivity for CITK (>17-fold versus 373 other human kinases), making C3TD879 the first chemical probe suitable for interrogating the complex biology of CITK. Our small-molecule CITK inhibitors could not phenocopy the effects of CITK knockdown in cell proliferation, cell cycle progression, or cytokinesis assays, providing preliminary evidence that the structural roles of CITK may be more important than its kinase activity.


Subject(s)
Cytokinesis , Protein Serine-Threonine Kinases , Humans , Protein Serine-Threonine Kinases/metabolism , Cell Division , Cytokinesis/physiology , Phosphorylation , Cell Proliferation
2.
Front Bioeng Biotechnol ; 10: 871933, 2022.
Article in English | MEDLINE | ID: mdl-35600892

ABSTRACT

Recombinant protein expression in eukaryotic insect cells is a powerful approach for producing challenging targets. However, due to incompatibility with standard baculoviral platforms and existing low-throughput methodology, the use of the Drosophila melanogaster "S2" cell line lags behind more common insect cell lines such as Sf9 or High-Five™. Due to the advantages of S2 cells, particularly for secreted and secretable proteins, the lack of a simple and parallelizable S2-based platform represents a bottleneck, particularly for biochemical and biophysical laboratories. Therefore, we developed FAS2FURIOUS, a simple and rapid S2 expression pipeline built upon an existing low-throughput commercial platform. FAS2FURIOUS is comparable in effort to simple E. coli systems and allows users to clone and test up to 46 constructs in just 2 weeks. Given the ability of S2 cells to express challenging targets, including receptor ectodomains, secreted glycoproteins, and viral antigens, FAS2FURIOUS represents an attractive orthogonal approach for protein expression in eukaryotic cells.

3.
J Med Chem ; 63(15): 8325-8337, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32673492

ABSTRACT

The nucleotide exchange factor Son of Sevenless (SOS) catalyzes the activation of RAS by converting it from its inactive GDP-bound state to its active GTP-bound state. Recently, we have reported the discovery of small-molecule allosteric activators of SOS1 that can increase the amount of RAS-GTP in cells. The compounds can inhibit ERK phosphorylation at higher concentrations by engaging a feedback mechanism. To further study this process, we sought different chemical matter from an NMR-based fragment screen using selective methyl labeling. To aid this process, several Ile methyl groups located in different binding sites of the protein were assigned and used to categorize the NMR hits into different classes. Hit to lead optimization using an iterative structure-based design paradigm resulted in compounds with improvements in binding affinity. These improved molecules of a different chemical class increase SOS1cat-mediated nucleotide exchange on RAS and display cellular action consistent with our prior results.


Subject(s)
Guanosine Triphosphate/metabolism , SOS1 Protein/agonists , SOS1 Protein/metabolism , Sulfonamides/chemistry , Sulfonamides/pharmacology , ras Proteins/metabolism , Allosteric Regulation/drug effects , Crystallography, X-Ray , Drug Design , Drug Discovery , Humans , Molecular Docking Simulation , SOS1 Protein/chemistry
4.
J Med Chem ; 61(19): 8875-8894, 2018 10 11.
Article in English | MEDLINE | ID: mdl-30205005

ABSTRACT

Son of sevenless homologue 1 (SOS1) is a guanine nucleotide exchange factor that catalyzes the exchange of GDP for GTP on RAS. In its active form, GTP-bound RAS is responsible for numerous critical cellular processes. Aberrant RAS activity is involved in ∼30% of all human cancers; hence, SOS1 is an attractive therapeutic target for its role in modulating RAS activation. Here, we describe a new series of benzimidazole-derived SOS1 agonists. Using structure-guided design, we discovered small molecules that increase nucleotide exchange on RAS in vitro at submicromolar concentrations, bind to SOS1 with low double-digit nanomolar affinity, rapidly enhance cellular RAS-GTP levels, and invoke biphasic signaling changes in phosphorylation of ERK 1/2. These compounds represent the most potent series of SOS1 agonists reported to date.


Subject(s)
Benzimidazoles/pharmacology , Drug Discovery/standards , Guanine Nucleotide Exchange Factors/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , SOS1 Protein/agonists , SOS1 Protein/metabolism , Benzimidazoles/chemistry , Extracellular Signal-Regulated MAP Kinases/metabolism , Guanine Nucleotide Exchange Factors/chemistry , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , HeLa Cells , Humans , Phosphorylation , Protein Conformation , Proto-Oncogene Proteins p21(ras)/chemistry , Structure-Activity Relationship
5.
ACS Med Chem Lett ; 8(11): 1171-1176, 2017 Nov 09.
Article in English | MEDLINE | ID: mdl-29152050

ABSTRACT

The acyldepsipeptide (ADEP) antibiotics operate through a clinically unexploited mechanism of action and thus have attracted attention from several antibacterial development groups. The ADEP scaffold is synthetically tractable, and deep-seated modifications have produced extremely potent antibacterial leads against Gram-positive pathogens. Although newly identified ADEP analogs demonstrate remarkable antibacterial activity against bacterial isolates and in mouse models of bacterial infections, stability issues pertaining to the depsipeptide core remain. To date, no study has been reported on the natural ADEP scaffold that evaluates the sole importance of the macrocyclic linkage on target engagement, molecular conformation, and bioactivity. To address this gap in ADEP structure-activity relationships, we synthesized three ADEP analogs that only differ in the linkage motif (i.e., ester, amide, and N-methyl amide) and provide a side-by-side comparison of conformational behavior and biological activity. We demonstrate that while replacement of the naturally occurring ester linkage with a secondary amide maintains in vitro biochemical activity, this simple substitution results in a significant drop in whole-cell activity. This study provides direct evidence that ester to amide linkage substitution is unlikely to provide a reasonable solution for ADEP instability.

6.
J Nat Prod ; 79(4): 1193-7, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-26967980

ABSTRACT

Caseinolytic protease P (ClpP) maintains essential roles in bacterial homeostasis. As such, both the inhibition and activation of this enzyme result in bactericidal activity, making ClpP a promising target for antibacterial drug development. Herein, we report the results of a fluorescence-based screen of ∼450 structurally diverse fungal and bacterial secondary metabolites. Sclerotiamide (1), a paraherquamide-related indolinone, was identified as the first non-peptide-based natural product activator of ClpP. Structure-activity relationships arising from the initial screen, preliminary biochemical evaluation of 1, and rationale for the exploitation of this chemotype to develop novel ClpP activators are presented.


Subject(s)
Biological Products/chemistry , Biological Products/pharmacology , Endopeptidases/metabolism , Indolizines/chemistry , Indolizines/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Catalysis , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...