Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 655: 123996, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38490404

ABSTRACT

The immunomodulatory properties of ß-glucans have sparked interest among various medical fields. As vaccine adjuvants, glucan particles offer additional advantages as antigen delivery systems. This study reported the immunomodulatory properties of glucan particles with different size and chemical composition. The effect of glucan microparticles (GPs) and glucan nanoparticles (Glu 130 and 355 NPs) was evaluated on human immune cells. While GPs and Glu 355 NPs demonstrated substantial interaction with Dectin-1 receptor on monocytes, Glu 130 NPs exhibited reduced activation of this receptor. This observation was substantiated by blocking Dectin-1, resulting in inhibition of reactive oxygen species production induced by GPs and Glu 355 NPs. Notably, monocyte-derived dendritic cells (moDCs) stimulated by Glu 355 NPs exhibited phenotypic and functional maturation, essential for antigen cross-presentation. The immunomodulatory efficacy was investigated using an autologous mixed lymphocyte reaction (AMLR), resulting in considerable rates of lymphocyte proliferation and an intriguing profile of cytokine and chemokine release. Our findings highlight the importance of meticulously characterizing the size and chemical composition of ß-glucan particles to draw accurate conclusions regarding their immunomodulatory activity. This in vitro model mimics the human cellular immune response, and the results obtained endorse the use of ß-glucan-based delivery systems as future vaccine adjuvants.


Subject(s)
Glucans , beta-Glucans , Humans , Glucans/pharmacology , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Adjuvants, Vaccine , beta-Glucans/pharmacology , beta-Glucans/chemistry , Antigens
2.
Vaccine ; 41(23): 3481-3485, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37121804

ABSTRACT

The increasing awareness of endotoxin contamination has raised important questions during the study of the mechanism of action of the vaccine adjuvants. The endotoxins or lipopolysaccharides (LPS) can contaminate vaccine formulations contributing to result misinterpretations of the in vitro and in vivo studies. In this short communication, we considered the suitability of the Limulus amebocyte lysate (LAL) assay to quantify chitosan (Chit) nanoparticle (NP) endotoxin contamination to use them in a comparative in vitro immunotoxicology study using both LPS-free (LF) and non-LF Chit NPs. It was shown that chit NPs had a masking effect on endotoxin levels, hampering a reliable conclusion about the effect of their contamination. Neither non-LF nor LF Chit NPs induced the production of ROS in RAW 264.7 cells or IL-6 and TNF-α in PBMCs. The lack of effect of non-LF NPs was not expected and likely due to the NPs masking effect, more evident for higher deacetylation degree Chit. Overall, to prevent questionable results, nanomaterials should be produced under endotoxin-free conditions.


Subject(s)
Limulus Test , Nanoparticles , Limulus Test/methods , Adjuvants, Vaccine , Endotoxins , Lipopolysaccharides
3.
Pharmaceutics ; 15(2)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36839945

ABSTRACT

Curcumin is known for its multiple health benefits, largely due to its antioxidant and anti-inflammatory properties. It has been extensively studied as a therapeutic agent, however, it does not have good clinical efficacy due to its poor water solubility and bioavailability. Despite accepting the encapsulation of this compound in polymeric particles as one of the most promising strategies to increase its therapeutic value, these nanoparticles have fallen short of expectations due to a lack of assessment of their possible adverse effects on the immune system. Therefore, in this work, we report on a new method to encapsulate curcumin into glucan nanoparticles and their effects on cells of the immune system were evaluated. Two different-sized curcumin-loaded glucan NPs (GluCur 100 and GluCur 380) were produced, each with an encapsulation efficiency close to 100%, and were characterized regarding their size distribution, surface properties, and morphology. The results revealed the greatest hemolytic effect and cytotoxicity for the smallest particles (100 nm) tested in human PBMCs and RAW 264.7 cells. Although GluCur 380 NPs showed a weaker ROS production, they were able to inhibit the production of NO by macrophages. Furthermore, we found that the coagulation time was not affected by both sized-particles as well as platelet function. Additionally, both nanoparticles induced lymphocyte proliferation and TNF-α secretion by Mo-DCs. In conclusion, this report emphasizes the importance of the immunotoxicity assessment and how this is dependent on the intrinsic properties of nanomaterials, hopefully contributing to increasing the safety of nanomedicines.

4.
Methods Mol Biol ; 2412: 269-280, 2022.
Article in English | MEDLINE | ID: mdl-34918250

ABSTRACT

Beta-glucans are a group of polysaccharides with intrinsic immunostimulatory properties which makes the design of new particulate vaccine adjuvants based on ß-glucans very promising. The size of the particles and the antigen loading method, encapsulated into particles or adsorbed on its surface, will influence the toxicological and adjuvanticity properties of the particulate adjuvant. Herein we describe the production of glucan nanoparticles (NPs) with three different sizes, approximately 150 nm, 350 nm, and microparticles as shells (GPs) with approximately 3 µm. The association of the antigen to the particulate adjuvant is described using model protein antigens. The method can be easily adapted for real protein antigens.


Subject(s)
Nanoparticles , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , Adjuvants, Vaccine , Antigens , Glucans , beta-Glucans
5.
Chem Res Toxicol ; 33(11): 2819-2833, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33050694

ABSTRACT

Poly-ε-caprolactone (PCL) is a biodegradable polyester that has FDA and CE approval as a medical device. Nonetheless, the lack of toxicity exhibited by the polymer cannot be extrapolated to its nanomaterial conformation. Despite PCL-based NPs being widely studied in the biomedical field for their advantages as controlled drug delivery systems, little data describe PCL NPs' toxicity, particularly immunotoxicity. This work assessed different PCL-based delivery systems intended for protein delivery regarding their immunotoxicity and hemocompatibility. Two different molecular weight PCL polymers were used, as well as blends with chitosan and glucan. Results showed that the presence of NaOH during the production of PCL2 NPs and PCL2/glucan NPs induced PCL alkali hydrolysis, generating more reactive groups (carboxyl and hydroxyl) that contributed to an increased toxicity of the NPs (higher reduction in peripheral blood mononuclear cell viability and lower hemocompatibility). PCL2/glucan NPs showed an anti-inflammatory activity characterized by the inhibition of LPS stimulated nitric oxide (NO) and TNF-α. In conclusion, generalizations among different PCL NP delivery systems must be avoided, and immunotoxicity assessments should be performed in the early stage of product development to increase the clinical success of the nanomedicine.


Subject(s)
Nanoparticles/chemistry , Polyesters/chemistry , Animals , Cell Line , Cell Survival/drug effects , Cytokines/biosynthesis , Humans , Hydrolysis , Mice , Molecular Weight , Nitric Oxide/biosynthesis , Particle Size , Polyesters/pharmacology , RAW 264.7 Cells , Reactive Oxygen Species/metabolism
6.
Chem Res Toxicol ; 33(4): 915-932, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32138518

ABSTRACT

Glucan (from Alcaligenes faecalis) is a polymer composed of ß-1,3-linked glucose residues, and it has been addressed in different medical fields, namely in nanotechnology, as a vaccine or a drug delivery system. However, due to their small size, nanomaterials may present new risks and uncertainties. Thus, this work aims to describe the production of glucan nanoparticles (NPs) with two different sizes, and to evaluate the influence of the NPs size on immunotoxicity. Results showed that, immediately after production, glucan NPs presented average sizes of 129.7 ± 2.5 and 355.4 ± 41.0 nm. Glucan NPs of 130 nm presented greater ability to decrease human peripheral blood mononuclear cells and macrophage viability and to induce reactive oxygen species production than glucan NPs of 355 nm. Both NP sizes caused hemolysis and induced a higher metabolic activity in lymphocytes, although the concentration required to observe such effect was lower for the 130 nm glucan NPs. Regarding pro-inflammatory cytokines, only the larger glucan NPs (355 nm) were able to induce the secretion of IL-6 and TNF-α, probably due to their recognition by dectin-1. This higher immunomodulatory effect of the larger NPs was also observed in its ability to stimulate the production of nitric oxide (NO) and IL-1ß. On the contrary, a small amount of Glu 130 NPs inhibited NO production. In conclusion, on the safe-by-design of glucan NPs, the size of the particles should be an important critical quality attribute to guarantee the safety and effectiveness of the nanomedicine.


Subject(s)
Cell Death/drug effects , Glucans/toxicity , Leukocytes, Mononuclear/drug effects , Nanoparticles/chemistry , Nanoparticles/toxicity , Alcaligenes/chemistry , Cell Survival/drug effects , Glucans/chemical synthesis , Glucans/chemistry , Humans , Leukocytes, Mononuclear/immunology , Macrophages/drug effects , Macrophages/immunology , Particle Size , Reactive Oxygen Species/metabolism
7.
Ecotoxicol Environ Saf ; 195: 110500, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32222596

ABSTRACT

Airborne environmental particles (EP) more commonly referred as particulate matter (PM) are an illustrative marker of air pollution that is associated with adverse effects on human health. Considering, PM is a complex mixture, not only in terms of its chemical composition, but also in the range of particle size, it is difficult to identify which attribute contributes more for the toxicity. Currently, there is no report about the immunotoxicological effects caused by PM with reduced content of heavy metals. This study intends to address this gap and provides a detailed characterization and immunotoxicity evaluation of PM collected in an urban area with heavy traffic congestion. Environmental particles were separated by different sizes though a sucrose gradient. This method allowed to achieve 4 sized fractions: EP f 15 % with a mean diameter of 284 nm ± 1.86 nm, EP f 25 % with a mean diameter of 461 nm ± 1.72 nm, EP f 35 % with a mean diameter of 1845 nm ± 251 nm and EP f 45 % with a mean diameter of 2204 nm ± 310 nm. Only the fractions with the smallest sizes (EP f 15 % and EP f 25 %) were subsequently studied. The chemical composition of both fractions was not substantially different, and the dominant elements were C, O, Ca and K. Only EP f 25 % showed to have a small amount of Fe. Therefore, the heavy metal elements were eliminated through centrifugation. Essentially, we found that the EP f 15 % was more cytotoxic in RAW 264.7 cells than EP f 25 %, which indicates the smaller size as the motive for the higher toxicity. In addition, both fractions of EP presented a good internalization in macrophages after 2 h exposure and induced the production of reactive oxygen species in a concentration-dependent manner. Moreover, EP f 15 % and EP f 25 % led to a strong secretion of proinflammatory cytokines (TNF-α and IL-6) in human peripheral blood mononuclear cells (hPBMCs) in the 3 concentrations tested. The inflammatory response observed was independent of the presence of heavy metals and endotoxins, since these last were suppressed by using polymyxin B sulfate. This report emphasizes the importance of an adequate physicochemical characterization and adequate controls in the experiments to achieve a right interpretation of the biological effects caused by PM.


Subject(s)
Air Pollutants/toxicity , Environmental Monitoring/methods , Leukocytes, Mononuclear/drug effects , Metals, Heavy/toxicity , Particulate Matter/toxicity , Air Pollutants/analysis , Cytokines/metabolism , Humans , Leukocytes, Mononuclear/immunology , Metals, Heavy/analysis , Particle Size , Particulate Matter/analysis
8.
Article in English | MEDLINE | ID: mdl-32154232

ABSTRACT

Nanoparticles (NPs) assumed an important role in the area of drug delivery. Despite the number of studies including NPs are growing over the last years, their side effects on the immune system are often ignored or omitted. One of the most studied polymers in the nano based drug delivery system field is chitosan (Chit). In the scientific literature, although the physicochemical properties [molecular weight (MW) or deacetylation degree (DDA)] of the chitosan, endotoxin contamination and appropriate testing controls are rarely reported, they can strongly influence immunotoxicity results. The present work aimed to study the immunotoxicity of NPs produced with different DDA and MW Chit polymers and to benchmark it against the polymer itself. Chit NPs were prepared based on the ionic gelation of Chit with sodium tripolyphosphate (TPP). This method allowed the production of two different NPs: Chit 80% NPs (80% DDA) and Chit 93% NPs (93% DDA). In general, we found greater reduction in cell viability induced by Chit NPs than the respective Chit polymers when tested in vitro using human peripheral blood monocytes (PBMCs) or RAW 264.7 cell line. In addition, Chit 80% NPs were more cytotoxic for PBMCs, increased reactive oxygen species (ROS) production (above 156 µg/mL) in the RAW 264.7 cell line and interfered with the intrinsic pathway of coagulation (at 1 mg/mL) when compared to Chit 93% NPs. On the other hand, only Chit 93% NPs induced platelet aggregation (at 2 mg/mL). Although Chit NPs and Chit polymers did not stimulate the nitric oxide (NO) production in RAW 264.7 cells, they induced a decrease in lipopolysaccharide (LPS)-induced NO production at all tested concentrations. None of Chit NPs and polymers caused hemolysis, nor induced PBMCs to secrete TNF-α and IL-6 cytokines. From the obtained results we concluded that the DDA of the Chit polymer and the size of Chit NPs influence the in vitro immunotoxicity results. As the NPs are more cytotoxic than the corresponding polymers, one should be careful in the extrapolation of trends from the polymer to the NPs, and in the comparisons among delivery systems prepared with different DDA chitosans.

9.
Article in English | MEDLINE | ID: mdl-31245366

ABSTRACT

Polylactic acid (PLA), a biodegradable and biocompatible polymer produced from renewable resources, has been widely used as a nanoparticulate platform for antigen and drug delivery. Despite generally regarded as safe, its immunotoxicological profile, when used as a polymeric nanoparticle (NP), is not well-documented. Thus, this study intends to address this gap, by evaluating the toxicity of two different sized PLA NPs (PLAA NPs and PLAB NPs), produced by two nanoprecipitation methods and extensively characterized regarding their physicochemical properties in in vitro experimental conditions. After production, PLAA NPs mean diameter (187.9 ± 36.9 nm) was superior to PLAB NPs (109.1 ± 10.4 nm). Interestingly, when in RPMI medium, both presented similar mean size (around 100 nm) and neutral zeta potential, possibly explaining the similarity between their cytotoxicity profile in PBMCs. On the other hand, in DMEM medium, PLAA NPs presented smaller mean diameter (75.3 ± 9.8 nm) when compared to PLAB NPs (161.9 ± 8.2 nm), which may explain its higher toxicity in RAW 264.7. Likewise, PLAA NPs induced a higher dose-dependent ROS production. Irrespective of size differences, none of the PLA NPs presented an inflammatory potential (NO production) or a hemolytic activity in human blood. The results herein presented suggest the hypothesis, to be tested in the future, that PLA NPs presenting a smaller sized population possess increased cytotoxicity. Furthermore, this study emphasizes the importance of interpreting results based on adequate physicochemical characterization of nanoformulations in biological medium. As observed, small differences in size triggered by the dispersion in cell culture medium can have repercussions on toxicity, and if not correctly evaluated can lead to misinterpretations, and subsequent ambiguous conclusions.

SELECTION OF CITATIONS
SEARCH DETAIL
...