Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(1): 015102, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37478441

ABSTRACT

In the dynamic-shell (DS) concept [V. N. Goncharov et al., Novel Hot-Spot Ignition Designs for Inertial Confinement Fusion with Liquid-Deuterium-Tritium Spheres, Phys. Rev. Lett. 125, 065001 (2020).PRLTAO0031-900710.1103/PhysRevLett.125.065001] for laser-driven inertial confinement fusion the deuterium-tritium fuel is initially in the form of a homogeneous liquid inside a wetted-foam spherical shell. This fuel is ignited using a conventional implosion, which is preceded by a initial compression of the fuel followed by its expansion and dynamic formation of a high-density fuel shell with a low-density interior. This Letter reports on a scaled-down, proof-of-principle experiment on the OMEGA laser demonstrating, for the first time, the feasibility of DS formation. A shell is formed by convergent shocks launched by laser pulses at the edge of a plasma sphere, with the plasma itself formed as a result of laser-driven compression and relaxation of a surrogate plastic-foam ball target. Three x-ray diagnostics, namely, 1D spatially resolved self-emission streaked imaging, 2D self-emission framed imaging, and backlighting radiography, have shown good agreement with the predicted evolution of the DS and its stability to low Legendre mode perturbations introduced by laser irradiation and target asymmetries.

2.
Phys Rev Lett ; 130(14): 145103, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37084458

ABSTRACT

Inverse bremsstrahlung absorption was measured based on transmission through a finite-length plasma that was thoroughly characterized using spatially resolved Thomson scattering. Expected absorption was then calculated using the diagnosed plasma conditions while varying the absorption model components. To match data, it is necessary to account for (i) the Langdon effect; (ii) laser-frequency (rather than plasma-frequency) dependence in the Coulomb logarithm, as is typical of bremsstrahlung theories but not transport theories; and (iii) a correction due to ion screening. Radiation-hydrodynamic simulations of inertial confinement fusion implosions have to date used a Coulomb logarithm from the transport literature and no screening correction. We anticipate that updating the model for collisional absorption will substantially revise our understanding of laser-target coupling for such implosions.

3.
Rev Sci Instrum ; 93(10): 105102, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36319381

ABSTRACT

A platform has been developed to study laser-direct-drive energy coupling at the National Ignition Facility (NIF) using a plastic sphere target irradiated in a polar-direct-drive geometry to launch a spherically converging shock wave. To diagnose this system evolution, eight NIF laser beams are directed onto a curved Cu foil to generate Heα line emission at a photon energy of 8.4 keV. These x rays are collected by a 100-ps gated x-ray imager in the opposing port to produce temporally gated radiographs. The platform is capable of acquiring images during and after the laser drive launches the shock wave. A backlighter profile is fit to the radiographs, and the resulting transmission images are Abel inverted to infer radial density profiles of the shock front and to track its temporal evolution. The measurements provide experimental shock trajectories and radial density profiles that are compared to 2D radiation-hydrodynamic simulations using cross-beam energy transfer and nonlocal heat-transport models.

4.
Phys Rev E ; 106(3-2): 035206, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36266806

ABSTRACT

Investigating the potential benefits of the use of magnetic fields in inertial confinement fusion experiments has given rise to experimental platforms like the Magnetized Liner Inertial Fusion approach at the Z-machine (Sandia National Laboratories) or its laser-driven equivalent at OMEGA (Laboratory for Laser Energetics). Implementing these platforms at MegaJoule-scale laser facilities, such as the Laser MegaJoule (LMJ) or the National Ignition Facility (NIF), is crucial to reaching self-sustained nuclear fusion and enlarges the level of magnetization that can be achieved through a higher compression. In this paper, we present a complete design of an experimental platform for magnetized implosions using cylindrical targets at LMJ. A seed magnetic field is generated along the axis of the cylinder using laser-driven coil targets, minimizing debris and increasing diagnostic access compared with pulsed power field generators. We present a comprehensive simulation study of the initial B field generated with these coil targets, as well as two-dimensional extended magnetohydrodynamics simulations showing that a 5 T initial B field is compressed up to 25 kT during the implosion. Under these circumstances, the electrons become magnetized, which severely modifies the plasma conditions at stagnation. In particular, in the hot spot the electron temperature is increased (from 1 keV to 5 keV) while the density is reduced (from 40g/cm^{3} to 7g/cm^{3}). We discuss how these changes can be diagnosed using x-ray imaging and spectroscopy, and particle diagnostics. We propose the simultaneous use of two dopants in the fuel (Ar and Kr) to act as spectroscopic tracers. We show that this introduces an effective spatial resolution in the plasma which permits an unambiguous observation of the B-field effects. Additionally, we present a plan for future experiments of this kind at LMJ.

5.
Phys Rev Lett ; 129(9): 095001, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36083671

ABSTRACT

Spherical implosions in inertial confinement fusion are inherently sensitive to perturbations that may arise from experimental constraints and errors. Control and mitigation of low-mode (long wavelength) perturbations is a key milestone to improving implosion performances. We present the first 3D radiation-hydrodynamic simulations of directly driven inertial confinement fusion implosions with an inline package for polarized crossed-beam energy transfer. Simulations match bang times, yields (separately accounting for laser-induced high modes and fuel age), hot spot flow velocities and direction, for which polarized crossed-beam energy transfer contributes to the systematic flow orientation evident in the OMEGA implosion database. Current levels of beam mispointing, imbalance, target offset, and asymmetry from polarized crossed-beam energy transfer degrade yields by more than 40%. The effectiveness of two mitigation strategies for low modes is explored.

6.
Rev Sci Instrum ; 92(1): 013501, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33514221

ABSTRACT

We report on the optimization of a BremsStrahlung Cannon (BSC) design for the investigation of laser-driven fast electron populations in a shock ignition relevant experimental campaign at the Laser Megajoule-PETawatt Aquitaine Laser facility. In this regime with laser intensities of 1015 W/cm2-1016 W/cm2, fast electrons with energies ≤100 keV are expected to be generated through Stimulated Raman Scattering (SRS) and Two Plasmon Decay (TPD) instabilities. The main purpose of the BSC in our experiment is to identify the contribution to x-ray emission from bremsstrahlung of fast electrons originating from SRS and TPD, with expected temperatures of 40 keV and 95 keV, respectively. Data analysis and reconstruction of the distributions of x-ray photons incident on the BSC are described.

7.
Nat Commun ; 10(1): 4212, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31527588

ABSTRACT

Suprathermal electrons are routinely generated in high-intensity laser produced plasmas via instabilities driven by non-linear laser-plasma interaction. Their accurate characterization is crucial for the performance of inertial confinement fusion as well as for performing experiments in laboratory astrophysics and in general high-energy-density physics. Here, we present studies of non-thermal atomic states excited by suprathermal electrons in kJ-ns-laser produced plasmas. Highly spatially and spectrally resolved X-ray emission from the laser-deflected part of the warm dense Cu foil visualized the hot electrons. A multi-scale two-dimensional hydrodynamic simulation including non-linear laser-plasma interactions and hot electron propagation has provided an input for ab initio non-thermal atomic simulations. The analysis revealed a significant delay between the maximum of laser pulse and presence of suprathermal electrons. Agreement between spectroscopic signatures and simulations demonstrates that combination of advanced high-resolution X-ray spectroscopy and non-thermal atomic physics offers a promising method to characterize suprathermal electrons inside the solid density matter.

8.
Phys Rev Lett ; 117(23): 235002, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27982626

ABSTRACT

Experiments have been performed evidencing significant stimulated Raman sidescattering (SRS) at large angles from the density gradient. This was achieved in long scale-length high-temperature plasmas in which two beams couple to the same scattered electromagnetic wave further demonstrating for the first time this multiple-beam collective SRS interaction. The collective nature of the coupling and the amplification at large angles from the density gradient increase the global SRS losses and produce light scattered in novel directions out of the planes of incidence of the beams. These findings obtained in plasmas conditions relevant of inertial confinement fusion experiments similarly apply to the more complex geometry of these experiments where anomalously large levels of SRS were measured.

9.
Article in English | MEDLINE | ID: mdl-26565161

ABSTRACT

We present a formulation of the model of laser-plasma interaction (LPI) at hydrodynamical scales that couples the plasma dynamics with linear and nonlinear LPI processes, including the creation and propagation of high-energy electrons excited by parametric instabilities and collective effects. This formulation accounts for laser beam refraction and diffraction, energy absorption due to collisional and resonant processes, and hot electron generation due to the stimulated Raman scattering, two-plasmon decay, and resonant absorption processes. Hot electron (HE) transport and absorption are described within the multigroup angular scattering approximation, adapted for transversally Gaussian electron beams. This multiscale inline LPI-HE model is used to interpret several shock ignition experiments, highlighting the importance of target preheating by HEs and the shortcomings of standard geometrical optics when modeling the propagation and absorption of intense laser pulses. It is found that HEs from parametric instabilities significantly increase the shock pressure and velocity in the target, while decreasing its strength and the overall ablation pressure.

10.
Article in English | MEDLINE | ID: mdl-25679718

ABSTRACT

A method for modeling realistic laser beams smoothed by kinoform phase plates is presented. The ray-based paraxial complex geometrical optics (PCGO) model with Gaussian thick rays allows one to create intensity variations, or pseudospeckles, that reproduce the beam envelope, contrast, and high-intensity statistics predicted by paraxial laser propagation codes. A steady-state cross-beam energy-transfer (CBET) model is implemented in a large-scale radiative hydrocode based on the PCGO model. It is used in conjunction with the realistic beam modeling technique to study the effects of CBET between coplanar laser beams on the target implosion. The pseudospeckle pattern imposed by PCGO produces modulations in the irradiation field and the shell implosion pressure. Cross-beam energy transfer between beams at 20(∘) and 40(∘) significantly degrades the irradiation symmetry by amplifying low-frequency modes and reducing the laser-capsule coupling efficiency, ultimately leading to large modulations of the shell areal density and lower convergence ratios. These results highlight the role of laser-plasma interaction and its influence on the implosion dynamics.

11.
Article in English | MEDLINE | ID: mdl-24730950

ABSTRACT

This paper deals with the computation of laser beam intensity in large-scale radiative hydrocodes applied to the modeling of nonlinear laser-plasma interactions (LPIs) in inertial confinement fusion (ICF). The paraxial complex geometrical optics (PCGO) is adapted for light waves in an inhomogeneous medium and modified to include the inverse bremsstrahlung absorption and the ponderomotive force. This thick-ray model is compared to the standard ray-tracing (RT) approach, both in the chic code. The PCGO model leads to different power deposition patterns and better diffraction modeling compared to standard RT codes. The intensity-reconstruction technique used in RT codes to model nonlinear LPI leads to artificial filamentation and fails to reproduce realistic ponderomotive self-focusing distances, intensity amplifications, and density channel depletions, whereas PCGO succeeds. Bundles of Gaussian thick rays can be used to model realistic non-Gaussian ICF beams. The PCGO approach is expected to improve the accuracy of ICF simulations and serve as a basis to implement diverse LPI effects in large-scale hydrocodes.

12.
Phys Rev Lett ; 108(14): 145002, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22540799

ABSTRACT

A Thomson scattering diagnostic has been used to measure the parameters of cylindrical wire array Z pinch plasmas during the ablation phase. The scattering operates in the collective regime (α>1) allowing spatially localized measurements of the ion or electron plasma temperatures and of the plasma bulk velocity. The ablation flow is found to accelerate towards the axis reaching peak velocities of 1.2-1.3×10(7) cm/s in aluminium and ∼1×10(7) cm/s in tungsten arrays. Precursor ion temperature measurements made shortly after formation are found to correspond to the kinetic energy of the converging ablation flow.

SELECTION OF CITATIONS
SEARCH DETAIL
...