Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Front Toxicol ; 6: 1389160, 2024.
Article in English | MEDLINE | ID: mdl-39109301

ABSTRACT

Di(ethylhexyl) phthalate (DEHP) is a ubiquitous environmental contaminant to which humans are exposed via multiple routes. Human health risk assessments for this substance have recently been updated, focusing on reproductive toxicity, including DEHP, in the list of chemicals classified as carcinogenic, mutagenic, or toxic to reproduction (CMR). Moreover, DEHP has also been defined as probably and possibly carcinogenic to humans based on its carcinogenicity in rodents. However, the mechanism of action of DEHP and its relevance in humans remain unclear. Rodent data suggests that DEHP induces cancer through non-genotoxic mechanisms related to multiple molecular signals, including PPARα activation, perturbation of fatty acid metabolism, induction of cell proliferation, decreased apoptosis, production of reactive oxygen species, and oxidative stress. According to the DEHP toxicological dataset, several in vitro cell transformation assays have been performed using different protocols and cellular models to produce different results. This study aimed to evaluate the carcinogenic potential of DEHP by using the A31-1-1 BALB/c-3T3 cell line in a standard cell transformation assay. Additionally, transcriptomic analysis was performed to explore the molecular responses and identify the affected toxicological pathways. Although DEHP treatment did not induce transformation in BALB/c-3T3 cells, the transcriptomic results revealed significant modulation of several pathways associated with DEHP metabolism, tissue-specific functions related to systemic metabolism, and basal cellular signaling with pleiotropic outcomes. Among these signaling pathways, modulation of cell-regulating signaling pathways, such as Notch, Wnt, and TGF-ß, can be highlighted. More specific modulation of such genes and pathways with double functions in metabolism and neurophysiology underlies the well-known crosstalk that may be crucial for the mechanism of action of DEHP. Our findings offer evidence to support the notion that these models are effective in minimizing the use of animal testing for toxicity assessment.

2.
Article in English | MEDLINE | ID: mdl-38928987

ABSTRACT

The study investigated the application of Wastewater-Based Epidemiology (WBE) as a tool for monitoring the SARS-CoV-2 prevalence in a city in northern Italy from October 2021 to May 2023. Based on a previously used deterministic model, this study proposed a variation to account for the population characteristics and virus biodegradation in the sewer network. The model calculated virus loads and corresponding COVID-19 cases over time in different areas of the city and was validated using healthcare data while considering viral mutations, vaccinations, and testing variability. The correlation between the predicted and reported cases was high across the three waves that occurred during the period considered, demonstrating the ability of the model to predict the relevant fluctuations in the number of cases. The population characteristics did not substantially influence the predicted and reported infection rates. Conversely, biodegradation significantly reduced the virus load reaching the wastewater treatment plant, resulting in a 30% reduction in the total virus load produced in the study area. This approach can be applied to compare the virus load values across cities with different population demographics and sewer network structures, improving the comparability of the WBE data for effective surveillance and intervention strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Wastewater , Italy/epidemiology , COVID-19/epidemiology , COVID-19/transmission , Humans , Wastewater/virology , Wastewater-Based Epidemiological Monitoring , Viral Load , Spatio-Temporal Analysis , Cities/epidemiology
3.
ALTEX ; 41(3): 439-456, 2024.
Article in English | MEDLINE | ID: mdl-38652827

ABSTRACT

Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are the major components of long-chain per- and polyfluorinated alkyl substances (PFAS), known for their chemical stability and environmental persistence. Even if PFOA and PFOS have been phased out or are limited in use, they still represent a concern for human and environmental health. Several studies have been per­formed to highlight the toxicological behavior of these chemicals and their mode of action (MoA). Data have suggested a causal association between PFOA or PFOS exposure and carcinogenicity in humans, but the outcomes of epidemiological studies showed some inconsistency. Moreover, the hypothesized MoA based on animal studies is considered not relevant for human cancer. To improve the knowledge on PFAS toxicology and contribute to the weight of evidence for the regu­latory classification of PFAS, we used the BALB/c 3T3 cell transformation assay (CTA), an in vitro model under consideration to be included in an integrated approach to testing and assessment for non-genotoxic carcinogens (NGTxCs). PFOS and PFOA were tested at several concentrations using a validated experimental protocol. Our results demonstrate that PFOA does not induce cell transformation, whereas PFOS exposure induced a concentration-related increase of type III foci. Malignant foci formation was triggered at PFOS concentrations equal to or higher than 50 ppm and was not directly associated with cytotoxicity or proliferation induction. The divergent CTA outcomes suggest that different molecular events could be responsible for the toxicological profiles of PFOS and PFOA, which were not fully captured in our study.


PFAS chemicals are known for their durability and resistance to heat, water, and oil. They are per­sistent in the environment and may pose health risks despite decreased use. This study explored PFOS and PFOA, two common PFAS chemicals, to understand their potential harm and cancer risk. To better understand how they might be harmful, we conducted a cell-based test that can resemble the carcinogenesis process in experimental animals. The test revealed PFOS, but not PFOA, can cause cancer-like changes, at levels of 50 parts per million or higher. This result suggests different PFAS chemicals affect cells differently, but we need more research to understand exactly how they work and how they might cause cancer. Understanding this could help regulate and reduce PFAS harmful effects. This research aligns with 3R principles by using cell-based tests as an alternative to animal testing, thereby promoting ethical research practices.


Subject(s)
Alkanesulfonic Acids , Caprylates , Carcinogens , Fluorocarbons , Fluorocarbons/toxicity , Animals , Caprylates/toxicity , Alkanesulfonic Acids/toxicity , Mice , Carcinogens/toxicity , Carcinogenicity Tests , BALB 3T3 Cells , Humans , Animal Testing Alternatives
4.
Int J Mol Sci ; 24(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36982734

ABSTRACT

The history of the development of the cell transformation assays (CTAs) is described, providing an overview of in vitro cell transformation from its origin to the new transcriptomic-based CTAs. Application of this knowledge is utilized to address how the different types of CTAs, variously addressing initiation and promotion, can be included on a mechanistic basis within the integrated approach to testing and assessment (IATA) for non-genotoxic carcinogens. Building upon assay assessments targeting the key events in the IATA, we identify how the different CTA models can appropriately fit, following preceding steps in the IATA. The preceding steps are the prescreening transcriptomic approaches, and assessment within the earlier key events of inflammation, immune disruption, mitotic signaling and cell injury. The CTA models address the later key events of (sustained) proliferation and change in morphology leading to tumor formation. The complementary key biomarkers with respect to the precursor key events and respective CTAs are mapped, providing a structured mechanistic approach to represent the complexity of the (non-genotoxic) carcinogenesis process, and specifically their capacity to identify non-genotoxic carcinogenic chemicals in a human relevant IATA.


Subject(s)
Carcinogens , Neoplasms , Humans , Carcinogens/toxicity , Carcinogenicity Tests/methods , Cell Transformation, Neoplastic/genetics , Carcinogenesis/genetics
5.
Article in English | MEDLINE | ID: mdl-36078735

ABSTRACT

Reducing children's exposure to air pollutants should be considered a primary goal, especially for the most vulnerable subjects. The goal of this study was to test the effectiveness of applying a protocol in the event of alert days, i.e., days with forecasted PM10 levels above the EU limit value (50 µg/m3). The test was conducted, before the onset of SARS-CoV-2 restrictions, in a classroom of a primary school in Parma (Italy)-a highly polluted area in Northern Italy. The protocol included indications for the frequency of opening windows and doors, as well as the activation of an air purifier. Teachers and students were asked to apply the protocol only in the event of alert days, while no indications were provided for non-alert days. A monitoring system measuring PM1, PM2.5, PM10, CO2, and NO2 was deployed in the classroom. Measurements of the same parameters were also performed outdoors near the school. The application of the protocol reduced the indoor/outdoor (I/O) ratio for all toxic pollutants. The reduction was also remarkable for PM10-the most critical air quality parameter in the study area (1.5 and 1.1 for non-alert and alert days, respectively). Indoor concentrations of PM10-especially during non-alert days-were often higher than outdoors, showing a major contribution from resuspension due to the movement of people and personal cloud. The protocol did not cause any increase in indoor CO2 levels. Our findings showed that the application of a ventilation protocol together with the contribution of an air purifier may represent an effective way to reduce children's exposure to air pollution during severe air pollution episodes. Considering the onset of COVID-19 and the airborne transmission of pathogens, this protocol now has more meaningful implications for children's welfare, and can be integrated with protocols designed as measures against the spread of SARS-CoV-2.


Subject(s)
Air Pollutants , Air Pollution, Indoor , COVID-19 , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Air Pollution, Indoor/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Carbon Dioxide , Child , Environmental Monitoring , Humans , Nitrogen Dioxide , Particulate Matter/analysis , SARS-CoV-2 , Schools
6.
Int J Mol Sci ; 23(14)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35886950

ABSTRACT

The Transformics Assay is an in vitro test which combines the BALB/c 3T3 Cell Transformation Assay (CTA) with microarray transcriptomics. It has been shown to improve upon the mechanistic understanding of the CTA, helping to identify mechanisms of action leading to chemical-induced transformation thanks to RNA extractions in specific time points along the process of in vitro transformation. In this study, the lowest transforming concentration of the carcinogenic benzo(a)pyrene (B(a)P) has been tested in order to find molecular signatures of initial events relevant for oncotransformation. Application of Enrichment Analysis (Metacore) to the analyses of the results facilitated key biological interpretations. After 72 h of exposure, as a consequence of the molecular initiating event of aryl hydrocarbon receptor (AhR) activation, there is a cascade of cellular events and microenvironment modification, and the immune and inflammatory responses are the main processes involved in cell response. Furthermore, pathways and processes related to cell cycle regulation, cytoskeletal adhesion and remodeling processes, cell differentiation and transformation were observed.


Subject(s)
Cell Transformation, Neoplastic , Receptors, Aryl Hydrocarbon , Animals , BALB 3T3 Cells , Benzo(a)pyrene/toxicity , Carcinogenesis/chemically induced , Carcinogens , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/genetics , Mice , Receptors, Aryl Hydrocarbon/metabolism , Tumor Microenvironment
7.
Sci Total Environ ; 807(Pt 3): 151034, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34666080

ABSTRACT

BACKGROUND/AIM: The relationship between air pollution and respiratory morbidity has been widely addressed in urban and metropolitan areas but little is known about the effects in non-urban settings. Our aim was to assess the short-term effects of PM10 and PM2.5 on respiratory admissions in the whole country of Italy during 2006-2015. METHODS: We estimated daily PM concentrations at the municipality level using satellite data and spatiotemporal predictors. We collected daily counts of respiratory hospital admissions for each Italian municipality. We considered five different outcomes: all respiratory diseases, asthma, chronic obstructive pulmonary disease (COPD), lower and upper respiratory tract infections (LRTI and URTI). Meta-analysis of province-specific estimates obtained by time-series models, adjusting for temperature, humidity and other confounders, was applied to extrapolate national estimates for each outcome. At last, we tested for effect modification by sex, age, period, and urbanization score. Analyses for PM2.5 were restricted to 2013-2015 cause the goodness of fit of exposure estimation. RESULTS: A total of 4,154,887 respiratory admission were registered during 2006-2015, of which 29% for LRTI, 12% for COPD, 6% for URTI, and 3% for asthma. Daily mean PM10 and PM2.5 concentrations over the study period were 23.3 and 17 µg/m3, respectively. For each 10 µg/m3 increases in PM10 and PM2.5 at lag 0-5 days, we found excess risks of total respiratory diseases equal to 1.20% (95% confidence intervals, 0.92, 1.49) and 1.22% (0.76, 1.68), respectively. The effects for the specific diseases were similar, with the strongest ones for asthma and COPD. Higher effects were found in the elderly and in less urbanized areas. CONCLUSIONS: Short-term exposure to PM is harmful for the respiratory system throughout an entire country, especially in elderly patients. Strong effects can be found also in less urbanized areas.


Subject(s)
Air Pollution , Particulate Matter , Aged , Air Pollution/statistics & numerical data , Hospitalization , Humans , Italy/epidemiology , Particulate Matter/adverse effects , Urbanization
8.
Front Genet ; 11: 579964, 2020.
Article in English | MEDLINE | ID: mdl-33240326

ABSTRACT

As the novel coronavirus disease sweeps across the world, there is growing speculation on the role that atmospheric factors may have played on the different distribution of SARS-CoV-2, and on the epidemiological characteristics of COVID-19. Knowing the role that environmental factors play in influenza virus outbreaks, environmental pollution and, in particular, atmospheric airborne (particulate matter, PM) has been considered as a potential key factor in the spread and mortality of COVID-19. A possible role of the PM as the virus carrier has also been debated. The role of PM in exacerbating respiratory and cardiovascular disease has been well recognized. Accumulating evidence support the hypothesis that PM can trigger inflammatory response at molecular, cellular and organ levels. On this basis, we developed the hypothesis that PM may play a role as a booster of COVID-19 rather than as a carrier of SARS-CoV-2. To support our hypothesis, we analyzed the molecular signatures detected in cells exposed to PM samples collected in one of the most affected areas by the COVID-19 outbreak, in Italy. T47D human breast adenocarcinoma cells were chosen to explore the global gene expression changes induced by the treatment with organic extracts of PM 2.5. The analysis of the KEGG's pathways showed modulation of several gene networks related to the leucocyte transendothelial migration, cytoskeleton and adhesion system. Three major biological process were identified, including coagulation, growth control and immune response. The analysis of the modulated genes gave evidence for the involvement of PM in the endothelial disease, coagulation disorders, diabetes and reproductive toxicity, supporting the hypothesis that PM, directly or through molecular interplay, affects the same molecular targets as so far known for SARS-COV-2, contributing to the cytokines storm and to the aggravation of the symptoms triggered by COVID-19. We provide evidence for a plausible cooperation of receptors and transmembrane proteins, targeted by PM and involved in COVID-19, together with new insights into the molecular interplay of chemicals and pathogens that could be of importance for sustaining public health policies and developing new therapeutic approaches.

9.
Environ Res ; 186: 109564, 2020 07.
Article in English | MEDLINE | ID: mdl-32668539

ABSTRACT

BACKGROUND/AIM: The aim of the present study was to assess the association between PM2.5, its sources, and preterm birth (PTB), low birth weight (LBW), and small for gestational age (SGA) in a large open residential cohort (Supersito Project in the Emilia-Romagna Region - Northern Italy). METHODS: We collected 2012-2014 pregnancy and childbirth data from Birth Assistance Certificates and selected the pregnancies of interest. PTBs (gestational age < 37 weeks), LBW (weight < 2500 g), and SGA (newborns weighing ≤ 10th age and pregnancy week-specific percentile) were considered. Three-year measurements of daily concentrations and constituents of PM2.5 were available at four sites and were analyzed through a source apportionment approach identifying 6 sources (traffic, biomass burning, oil combustion, anthropogenic mix, and two secondary factors). Exposure to PM2.5 and sources was calculated at address level. Using logistic regression models, associations between exposure and outcomes were derived, applying single-pollutant and two-pollutant models, to verify the independent effect of each source. RESULTS: The study included 23,708 neonates born to 23,415 women, among whom 1,311 PTB, 424 LBW, and 1,354 SGA occurred. PTB was the only outcome associated with PM2.5 mass (OR 1.03, 95% CI 1.002-1.058 per 1 µg/m3). Traffic, oil combustion and secondary sulfates and organics showed independent effects on PTB. Exposure to secondary nitrates was associated with a lower risk of PTB. There was no association between LBW or SGA and source-specific PM2.5 components or the residual PM2.5 related to all other sources. CONCLUSION: This study found an association between PTB and PM2.5. Traffic, secondary sulfates, and organic and oil combustion were the sources with most consistent association.


Subject(s)
Air Pollutants , Air Pollution , Premature Birth , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Female , Humans , Infant, Low Birth Weight , Infant, Newborn , Italy/epidemiology , Maternal Exposure/adverse effects , Particulate Matter/analysis , Particulate Matter/toxicity , Pregnancy , Premature Birth/chemically induced , Premature Birth/epidemiology
10.
Arch Toxicol ; 94(8): 2899-2923, 2020 08.
Article in English | MEDLINE | ID: mdl-32594184

ABSTRACT

While regulatory requirements for carcinogenicity testing of chemicals vary according to product sector and regulatory jurisdiction, the standard approach starts with a battery of genotoxicity tests (which include mutagenicity assays). If any of the in vivo genotoxicity tests are positive, a lifetime rodent cancer bioassay may be requested, but under most chemical regulations (except plant protection, biocides, pharmaceuticals), this is rare. The decision to conduct further testing based on genotoxicity test outcomes creates a regulatory gap for the identification of non-genotoxic carcinogens (NGTxC). With the objective of addressing this gap, in 2016, the Organization of Economic Cooperation and Development (OECD) established an expert group to develop an integrated approach to the testing and assessment (IATA) of NGTxC. Through that work, a definition of NGTxC in a regulatory context was agreed. Using the adverse outcome pathway (AOP) concept, various cancer models were developed, and overarching mechanisms and modes of action were identified. After further refining and structuring with respect to the common hallmarks of cancer and knowing that NGTxC act through a large variety of specific mechanisms, with cell proliferation commonly being a unifying element, it became evident that a panel of tests covering multiple biological traits will be needed to populate the IATA. Consequently, in addition to literature and database investigation, the OECD opened a call for relevant assays in 2018 to receive suggestions. Here, we report on the definition of NGTxC, on the development of the overarching NGTxC IATA, and on the development of ranking parameters to evaluate the assays. Ultimately the intent is to select the best scoring assays for integration in an NGTxC IATA to better identify carcinogens and reduce public health hazards.


Subject(s)
Carcinogenicity Tests/standards , Carcinogens/toxicity , Animals , Consensus , Humans , Reproducibility of Results , Risk Assessment
11.
ALTEX ; 36(4): 623-633, 2019.
Article in English | MEDLINE | ID: mdl-31210278

ABSTRACT

The use of in vitro alternative methods is a promising approach to characterize the hazardous properties of environmental chemical mixtures, including urban airborne particulate matter (PM). The aim of this study was to examine seasonal differences in the toxic and transforming potential of PM samples, by using the in vitro cell transformation assay in Bhas 42 cells for the prediction of potential carcinogenic effects. Bhas 42 cells are already initiated, and the v-Ha-ras transfection, together with genetic modification following the immortalization process, makes them a valuable model to study the late steps of cellular transformation leading to the acquisition of the malignant phenotype. Exposure to organic extracts of PM1 and PM2.5 induced dose-related effects. The transforming and cytotoxic properties are related to the amount of PM collected during the sampling campaign and associated with the concentrations of polycyclic aromatic hydrocarbons (PAHs) in the samples. All the samples induced cell transformation following prolonged exposure of 2 weeks. Our results support the utility of the in vitro top-down approach to characterise the toxicity of real mixtures, thereby supporting regulators in the decision-making process. The results also identify the need for appropriate assay selection within the in vitro testing strategy to address the complexity of the final adverse outcomes.


Subject(s)
Air Pollutants/toxicity , Cell Transformation, Neoplastic/drug effects , Complex Mixtures/toxicity , Safety Management/methods , Animals , Dose-Response Relationship, Drug , Mice , Mice, Inbred BALB C/embryology , Particulate Matter/toxicity , Phenotype , Seasons
13.
Carcinogenesis ; 39(7): 955-967, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29554273

ABSTRACT

The development of alternative methods to animal testing is a priority in the context of regulatory toxicology. Carcinogenesis is a field where the demand for alternative methods is particularly high. The standard rodent carcinogenicity bioassay requires a large use of animals, high costs, prolonged duration and shows several limitations, which can affect the comprehension of the human relevance of animal carcinogenesis. The cell transformation assay (CTA) has long been debated as a possible in vitro test to study carcinogenesis. This assay provides an easily detectable endpoint of oncotransformation, which can be used to anchor the exposure to the acquisition of the malignant phenotype. However, the current protocols do not provide information on either molecular key events supporting the carcinogenesis process, nor the mechanism of action of the test chemicals. In order to improve the use of this assay in the integrated testing strategy for carcinogenesis, we developed the transformics method, which combines the CTA and transcriptomics, to highlight the molecular steps leading to in vitro malignant transformation. We studied 3-methylcholanthrene (3-MCA), a genotoxic chemical able to induce in vitro cell transformation, at both transforming and subtransforming concentrations in BALB/c 3T3 cells and evaluated the gene modulation at critical steps of the experimental protocol. The results gave evidence for the potential key role of the immune system and the possible involvement of the aryl hydrocarbon receptor (AhR) pathway as the initial steps of the in vitro transformation process induced by 3-MCA, suggesting that the initiating events are related to non-genotoxic mechanisms.


Subject(s)
Carcinogens/toxicity , Cell Transformation, Neoplastic/chemically induced , Methylcholanthrene/toxicity , 3T3 Cells , Animals , Biological Assay , Carcinogenesis/chemically induced , Carcinogenicity Tests/methods , Mice , Mice, Inbred BALB C , Receptors, Aryl Hydrocarbon/metabolism
14.
Toxicol In Vitro ; 45(Pt 3): 278-286, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28911985

ABSTRACT

There is an increased need to develop novel alternative approaches to the two-year rodent bioassay for the carcinogenicity assessment of substances where the rodent bioassay is still a basic requirement, as well as for those substances where animal use is banned or limited or where information gaps are identified within legislation. The current progress in this area was addressed in a EURL ECVAM- ESTIV workshop held in October 2016, in Juan les Pins. A number of initiatives were presented and discussed, including data-driven, technology-driven and pathway-driven approaches. Despite a seemingly diverse range of strategic developments, commonalities are emerging. For example, providing insight into carcinogenicity mechanisms is becoming an increasingly appreciated aspect of hazard assessment and is suggested to be the best strategy to drive new developments. Thus, now more than ever, there is a need to combine and focus efforts towards the integration of available information between sectors. Such cross-sectorial harmonisation will aid in building confidence in new approach methods leading to increased implementation and thus a decreased necessity for the two-year rodent bioassay.


Subject(s)
Carcinogenicity Tests/trends , Animal Testing Alternatives , Animals , Breast Neoplasms/chemically induced , Carcinogens/toxicity , Consensus Development Conferences as Topic , Europe , Female , Humans , Mice , Proportional Hazards Models , Rats , Technology/trends , Toxicogenetics
15.
Sci Rep ; 7(1): 2028, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28515485

ABSTRACT

Electronic cigarettes (e-cigs) are devices designed to deliver nicotine in a vaping solution rather than smoke and without tobacco combustion. Perceived as a safer alternative to conventional cigarettes, e-cigs are aggressively marketed as lifestyle-choice consumables, thanks to few restrictions and a lack of regulatory guidelines. E-cigs have also gained popularity among never-smokers and teenagers, becoming an emergent public health issue. Despite the burgeoning worldwide consumption of e-cigs, their safety remains largely unproven and it is unknown whether these devices cause in vivo toxicological effects that could contribute to cancer. Here we demonstrate the co-mutagenic and cancer-initiating effects of e-cig vapour in a rat lung model. We found that e-cigs have a powerful booster effect on phase-I carcinogen-bioactivating enzymes, including activators of polycyclic aromatic hydrocarbons (PAHs), and increase oxygen free radical production and DNA oxidation to 8-hydroxy-2'-deoxyguanosine. Furthermore, we found that e-cigs damage DNA not only at chromosomal level in peripheral blood, such as strand breaks in leucocytes and micronuclei formation in reticulocytes, but also at gene level such as point mutations in urine. Our results demonstrate that exposure to e-cigs could endanger human health, particularly among younger more vulnerable consumers.


Subject(s)
Electronic Nicotine Delivery Systems , Neoplasms/etiology , Neoplasms/metabolism , Animals , Antioxidants/metabolism , DNA Damage , Gas Chromatography-Mass Spectrometry , Lung/drug effects , Lung/metabolism , Lung/pathology , Male , Neoplasms/pathology , Oxidation-Reduction , Rats , Reactive Oxygen Species/metabolism , Risk Assessment , Risk Factors , Volatile Organic Compounds/adverse effects , Volatile Organic Compounds/analysis
16.
ALTEX ; 34(2): 235-252, 2017.
Article in English | MEDLINE | ID: mdl-27776202

ABSTRACT

An approach to systematically describe the uncertainties and complexity of the standard animal testing and assessment approach for carcinogenicity is explored by using a OECD Guidance Document that was originally developed for reporting defined in vitro approaches to testing and assessment. The format is suitable for this re-purposing and it appears that the potential multitude of approaches for integrating and interpreting data from standard animal testing may ultimately be conceptually similar to the challenge of integrating relevant in vitro and in silico data. This structured approach shall allow 1) fostering interest in developing improved defined in silico and in vitro approaches; 2) the definition of what type of effects should be predicted by the new approach; 3) selection of the most suitable reference data and assessments; 4) definition of the weight that the standard animal reference data should have compared to human reference data and mechanistic information in the context of assessing the fitness of the new in vitro and in silico approach; 5) definition of a benchmark for the minimum performance of the new approach, based on a conceptual recognition that correlation of alternative assessment results with reference animal results is limited by the uncertainties and complexity of the latter. A longer term perspective is indicated for evolving the definition of adversity for classification and regulatory purposes. This work will be further discussed and developed within the OECD expert group on non-genotoxic carcinogenicity IATA development.


Subject(s)
Carcinogenicity Tests/methods , Carcinogenicity Tests/standards , Uncertainty , Animal Testing Alternatives , Animals , Benchmarking , Computer Simulation , Humans , In Vitro Techniques , Mutagenicity Tests/methods , Risk Assessment/methods
17.
ALTEX ; 33(4): 359-392, 2016.
Article in English | MEDLINE | ID: mdl-27120445

ABSTRACT

Although regulatory requirements for carcinogenicity testing of chemicals vary according to product sector and regulatory jurisdiction, the standard approach starts with a battery of genotoxicity tests. If any of the in vivo genotoxicity tests are positive, a lifetime rodent cancer bioassay may be requested, which allows the detection of non-genotoxic carcinogens (NGTxC). However, under most chemical regulations the cancer bioassay is rarely requested, specific requests to obtain information on non-genotoxic mechanisms of carcinogenicity are few, and there are no OECD approved screening methods. When the in vitro genotoxicity battery is negative, usually no further carcinogenicity testing is requested. Consequently NGTxC might remain unidentified and therefore the risks they may pose to human health will not be managed. In contrast to genotoxic carcinogens NGTxCact through a large variety of specific mechanisms, and a panel of tests covering multiple biological traits will be needed. The development of an Integrated Approach to Testing and Assessment (IATA) of NGTxC could assist regulatory decision makers. We examine what NGTxC are and discuss chemical regulatory requirements and limitations. With a strong drive to reduce animal testing and costs in mind, it is essential that proper and robust alternatives for animal testing (3Rs) methods for addressing non-genotoxic modes of action are developed and used. Therefore relevant in vitro mechanisms and assays are described and tentatively organized in levels of information, indicating both a possible structure of the future IATA for NGTxC and associated OECD Test Guideline development priorities.


Subject(s)
Animal Testing Alternatives/methods , Carcinogenicity Tests/methods , Carcinogens/toxicity , Hazardous Substances/toxicity , Internationality , Animals , Biological Assay/methods , Mutagenicity Tests/methods
18.
Toxicol In Vitro ; 29(7): 1839-50, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26183914

ABSTRACT

Carcinogenesis is a multi-step process involving genetic alterations and non-genotoxic mechanisms. The in vitro cell transformation assay (CTA) is a promising tool for both genotoxic and non-genotoxic carcinogenesis. CTA relies on the ability of cells (e.g. BALB/c 3T3 mouse embryo fibroblasts) to develop a transformed phenotype after the treatment with suspected carcinogens. The classification of the transformed phenotype is based on coded morphological features, which are scored under a light microscope by trained experts. This procedure is time-consuming and somewhat prone to subjectivity. Herewith we provide a promising approach based on image analysis to support the scoring of malignant foci in BALB/c 3T3 CTA. The image analysis system is a quantitative approach, based on measuring features of malignant foci: dimension, multilayered growth, and invasivity into the surrounding monolayer of non-transformed cells. A logistic regression model was developed to estimate the probability for each focus to be transformed as a function of three statistical image descriptors. The estimated sensitivity of the derived classifier (untransformed against Type III) was 0.9, with an Area Under the Curve (AUC) value equal to 0.90 under the Receiver Operating Characteristics (ROC) curve.


Subject(s)
Cell Transformation, Neoplastic , Image Interpretation, Computer-Assisted , Animals , Area Under Curve , BALB 3T3 Cells , Biological Assay , Carcinogenicity Tests , Carcinogens/toxicity , Logistic Models , Mice , ROC Curve
19.
Carcinogenesis ; 36 Suppl 1: S160-83, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26106136

ABSTRACT

Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through effects on epithelial cells, the most common origin of cancer, as well as on stromal cells, extracellular matrix components and immune cells. Here, we review how environmental exposures can perturb the tumor microenvironment. We suggest a role for disrupting chemicals such as nickel chloride, Bisphenol A, butyltins, methylmercury and paraquat as well as more traditional carcinogens, such as radiation, and pharmaceuticals, such as diabetes medications, in the disruption of the tumor microenvironment. Further studies interrogating the role of chemicals and their mixtures in dose-dependent effects on the tumor microenvironment could have important general mechanistic implications for the etiology and prevention of tumorigenesis.


Subject(s)
Environmental Exposure/adverse effects , Hazardous Substances/adverse effects , Tumor Microenvironment/drug effects , Animals , Carcinogenesis/chemically induced , Humans , Neoplasms/chemically induced
20.
Carcinogenesis ; 36 Suppl 1: S2-18, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26106139

ABSTRACT

As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks.


Subject(s)
Environmental Exposure/adverse effects , Hazardous Substances/adverse effects , Neoplasms/chemically induced , Neoplasms/etiology , Animals , Humans , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL