Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biotechnol ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37490200

ABSTRACT

Severe Acute Respiratory Syndrome caused by a coronavirus is a recent viral infection. There is no scientific evidence or clinical trials to indicate that possible therapies have demonstrated results in suspected or confirmed patients. This work aims to perform a virtual screening of 1430 ligands through molecular docking and to evaluate the possible inhibitory capacity of these drugs about the Mpro protease of Covid-19. The selected drugs were registered with the FDA and available in the virtual drug library, widely used by the population. The simulation was performed using the MolAiCalD algorithm, with a Lamarckian genetic model (GA) combined with energy estimation based on rigid and flexible conformation grids. In addition, molecular dynamics studies were also performed to verify the stability of the receptor-ligand complexes formed through analyses of RMSD, RMSF, H-Bond, SASA, and MMGBSA. Compared to the binding energy of the synthetic redocking coupling (-6.8 kcal/mol/RMSD of 1.34 Å), which was considerably higher, it was then decided to analyze the parameters of only three ligands: ergotamine (-9.9 kcal/mol/RMSD of 2.0 Å), dihydroergotamine (-9.8 kcal/mol/RMSD of 1.46 Å) and olysio (-9.5 kcal/mol/RMSD of 1.5 Å). It can be stated that ergotamine showed the best interactions with the Mpro protease of Covid-19 in the in silico study, showing itself as a promising candidate for treating Covid-19.

2.
J Biomol Struct Dyn ; 41(24): 14621-14637, 2023.
Article in English | MEDLINE | ID: mdl-36815273

ABSTRACT

Some insects produce venoms to defend against predators and directly interact with opioid receptors. In the present study, it was identified two alkaloids in the wasp venom species Hymenoepimecis bicolor. It was demonstrated that these could act as potential inhibitors of opioid receptors through their robust affinity to the receptors. The interaction profile was given to opioid receptors (µOR), with 60% of targets similar to alkaloid 1, with 0.25 probability, and 46.7% of targets similar to alkaloid 2, with a probability 0.17 of affinity as a target, which is considered signaling macromolecules and can mediate the most potent analgesic and addictive properties of opiate alkaloids. Notably, both alkaloids showed -7.6 kcal/mol affinity to the morphine agonies through six residues, Gly124, Asp147, Trp293, Ile296, Ile322, and Tyr326. These observations suggest further research on opioid receptors using in vitro studies of possible therapeutic applications.Communicated by Ramaswamy H. Sarma.


Subject(s)
Alkaloids , Poisons , Receptors, Opioid , Morphine/chemistry , Morphine/pharmacology , Alkaloids/pharmacology
3.
J Biomol Struct Dyn ; 41(21): 11564-11577, 2023.
Article in English | MEDLINE | ID: mdl-36597918

ABSTRACT

A new worldwide concern has emerged with the recent emergence of infections caused by Candida auris. This reflects its comparative ease of transmission, substantial mortality, and the increasing level of resistance seen in the three major classes of antifungal drugs. Efforts to create a better design for structure-based drugs that described numerous modifications and the search for secondary metabolic structures derived from plant species are likely to reduce the virulence of several fungal pathogens. In this context, the present work aimed to evaluate in silico two naphthoquinones isolated from the roots of Capraria biflora, biflorin, and its dimmer, bis-biflorin, as potential inhibitors of Candida auris polymerase. Based on the simulation performed with the two naphthoquinones, biflorin and bis-biflorin, it can be stated that bis-biflorin showed the best interactions with Candida auris polymerase. Still, biflorin also demonstrated favorable coupling energy. Predictive pharmacokinetic assays suggest that biflorin has high oral bioavailability and more excellent metabolic stability compared to the bis-biflorin analogue. constituting a promising pharmacological tool.Communicated by Ramaswamy H. Sarma.


Subject(s)
Candida auris , Naphthoquinones , Molecular Docking Simulation , Naphthoquinones/pharmacology , Naphthoquinones/chemistry , Antifungal Agents/pharmacology , Microbial Sensitivity Tests
4.
J Biomol Struct Dyn ; 41(19): 9890-9906, 2023 11.
Article in English | MEDLINE | ID: mdl-36420665

ABSTRACT

The pandemic caused by Sars-CoV-2 is a viral infection that has generated one of the most significant health problems worldwide. Previous studies report the main protease (Mpro) as a potential target for this virus, as it is considered a crucial enzyme in mediating replication and viral transcription. This work presented the construction of new bioactive compounds for possible inhibition. The De novo molecular design of drugs method in the incremental construction of a ligant model within a receptor model was used, producing new structures with the help of artificial intelligence. The research algorithm and the scoring function responsible for predicting orientation and affinity in the molecular target at the time of coupling showed, as a result of the simulation, the compound with the highest bioaffinity value, Hit 998, with the energy of -17.62 kcal/mol, and synthetic viability close to 50%. While hit 1103 presented better synthetic viability (80%), its affinity energy of -10.28 kcal/mol. Both were compared with the reference linker N3, with a binding affinity of -7.5 kcal/mol. ADMET tests demonstrated that simulated compounds have a low risk of metabolic activation and do not exert effective distribution in the CNS, suggesting a pharmacokinetic mechanism based on local action, even with high topological polarity, which resulted in low oral bioavailability. In conclusion, MMGBSA, H-bonds, RMSD, SASA, and RMSF values were also obtained through molecular dynamics to verify the stability of the receptor-ligant complex within the active protein site to seek new therapeutic propositions in the fight against the pandemic.Communicated by Ramaswamy H. Sarma.


Subject(s)
Artificial Intelligence , COVID-19 , Humans , SARS-CoV-2 , Algorithms , Drug Design , Protease Inhibitors/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation
5.
J Biomol Struct Dyn ; 41(19): 9282-9296, 2023 11.
Article in English | MEDLINE | ID: mdl-36326114

ABSTRACT

Lantana camara L. (Verbenaceae), commonly called lead cambará, has often been used in folk medicine as antiseptic, antispasmodic, against hemorrhages, flu, colds, and diarrheic. This plant is considered a weed and an ornamental and medicinal plant and is an essential source of natural organic compounds, mainly flavonoids. This work aims to investigate the chemical composition and evaluate the biological properties such as antioxidant and acetylcholinesterase of the constituents from L. camara flowers. In addition, the computational simulation was carried out with the constituents identified. The results showed that methanolic extract of the flowers of L. camara presents toxicity, antioxidant activity with 97.8% inhibition percentage in the concentration of 0.25 mg mL-1 against the DPPH radical, and acetylcholinesterase activity. The phytochemical study of extract from L. camara flowers resulted in LC-MS identification of 18 polyphenolic compounds, such as phenolic acid derivatives, phenylethanoid glycosides, and flavonoids. In the in silico study, flavonoid isoverbascoside showed affinity energy of -9.9 kcal.mol-1 with the AChE enzyme. Their phytochemical content, mainly the presence of flavonoids and phenolic compounds in L. camara extracts, may be related to the antioxidant and anticholinesterase potential observed.


Subject(s)
Antioxidants , Lantana , Antioxidants/pharmacology , Acetylcholinesterase , Lantana/chemistry , Molecular Docking Simulation , Plant Extracts/pharmacology , Flowers , Phytochemicals/pharmacology , Flavonoids/pharmacology
6.
J Biomol Struct Dyn ; 41(10): 4549-4559, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35510585

ABSTRACT

Dengue (DENV), Zica virus (ZIKV), and Chikungunya fever (CHIK) are tropical diseases that have caused a lot of problems in general worldwide. Transmitted by mosquitoes of the species Aedes aegypti and albopictus, they have not been completely eradicated in the country, and their proliferation has only increased in the Northeast region. Within the structure of the virus, it is possible to verify the presence of glycoprotein SN1, which is responsible for its replication. If this macromolecule is inhibited using a specific or complex linker, it can interrupt its replication activity. An alternative to this problem has been using structures derived from natural products that have pharmacological properties. A dynamic and molecular docking combined study used computational simulation in the four isomeric forms of bixin against the SN1 protein. The Z,E-bixin and E,E-bixin isomers, both with affinity energy -6.7 and -6.5 Kcal/mol, presented the best results. Thus, bixin and its isomers, found in annatto seeds, maybe an initial proposal in the search for prototype compounds to study to fight this lethal virus in the future.Communicated by Ramaswamy H. Sarma.


Subject(s)
Chikungunya virus , Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , Animals , Molecular Dynamics Simulation , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...