Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Toxins (Basel) ; 13(5)2021 05 08.
Article in English | MEDLINE | ID: mdl-34066812

ABSTRACT

Aflatoxin B1 is a potent carcinogen produced by Aspergillus flavus, mainly during grain storage. As pre-harvest methods are insufficient to avoid mycotoxin presence during storage, diverse curative techniques are being investigated for the inhibition of fungal growth and aflatoxin detoxification. Streptomyces spp. represent an alternative as they are a promising source of detoxifying enzymes. Fifty-nine Streptomyces isolates and a Streptomyces griseoviridis strain from the commercial product Mycostop®, evaluated against Penicillium verrucosum and ochratoxin A during previous work, were screened for their ability to inhibit Aspergillus flavus growth and decrease the aflatoxin amount. The activities of bacterial cells and cell-free extracts (CFEs) from liquid cultures were also evaluated. Fifty-eight isolates were able to inhibit fungal growth during dual culture assays, with a maximal reduction going down to 13% of the control. Aflatoxin-specific production was decreased by all isolates to at least 54% of the control. CFEs were less effective in decreasing fungal growth (down to 40% and 55% for unheated and heated CFEs, respectively) and aflatoxin-specific production, with a few CFEs causing an overproduction of mycotoxins. Nearly all Streptomyces isolates were able to degrade AFB1 when growing in solid and liquid media. A total degradation of AFB1 was achieved by Mycostop® on solid medium, as well as an almost complete degradation by IX20 in liquid medium (6% of the control). CFE maximal degradation went down to 37% of the control for isolate IX09. The search for degradation by-products indicated the presence of a few unknown molecules. The evaluation of residual toxicity of the tested isolates by the SOS chromotest indicated a detoxification of at least 68% of AFB1's genotoxicity.


Subject(s)
Aflatoxin B1/toxicity , Aspergillus flavus/growth & development , Streptomyces/metabolism , Aspergillus flavus/metabolism , Carcinogens/toxicity , Decontamination , Ochratoxins/metabolism , Penicillium/metabolism
2.
Toxins (Basel) ; 12(5)2020 05 05.
Article in English | MEDLINE | ID: mdl-32380688

ABSTRACT

Ochratoxin A (OTA) is a secondary metabolite produced by fungal pathogens such as Penicilliumverrucosum, which develops in food commodities during storage such as cereals, grapes, and coffee. It represents public health concerns due to its genotoxicity, carcinogenicity, and teratogenicity. The objective of this study was to evaluate the ability of actinobacteria and their metabolites to degrade OTA and/or to decrease its production. Sixty strains of actinobacteria were tested for their ability to prevent OTA formation by in vitro dual culture assays or with cell free extracts (CFEs). In dual culture, 17 strains strongly inhibited fungal growth, although it was generally associated with an increase in OTA specific production. Seventeen strains inhibited OTA specific production up to 4% of the control. Eleven actinobacteria CFEs reduced OTA specific production up to 62% of the control, while no substantial growth inhibition was observed except for two strains up to 72% of the control. Thirty-three strains were able to degrade OTA almost completely in liquid medium whereas only five were able to decrease it on solid medium, and two of them reduced OTA to an undetectable amount. Our results suggest that OTA decrease could be related to different strategies of degradation/metabolization by actinobacteria, through enzyme activities and secretion of secondary metabolites interfering with the OTA biosynthetic pathway. CFEs appeared to be ineffective at degrading OTA, raising interesting questions about the detoxification mechanisms. Common degradation by-products (e.g., OTα or L-ß-phenylalanine) were searched by HPLC-MS/MS, however, none of them were found, which implies a different mechanism of detoxification and/or a subsequent degradation into unknown products.


Subject(s)
Actinobacteria/metabolism , Decontamination , Food Contamination/prevention & control , Food Microbiology , Fungi/metabolism , Ochratoxins/metabolism , Actinobacteria/classification , Biodegradation, Environmental , Biosynthetic Pathways , Fungi/growth & development , Inactivation, Metabolic , Secondary Metabolism
3.
Sci Rep ; 10(1): 8265, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32427943

ABSTRACT

Bacterial spores are among the most resistant forms of life on Earth. Their exceptional resistance properties rely on various strategies, among them the core singular structure, organization and hydration. By using elastic incoherent neutron scattering, we probed the dynamics of Bacillus subtilis spores to determine whether core macromolecular motions at the sub-nanosecond timescale could also contribute to their resistance to physical stresses. In addition, in order to better specify the role of the various spore components, we used different mutants lacking essential structure such as the coat (PS4150 mutant), or the calcium dipicolinic acid complex (CaDPA) located in the core (FB122 mutant). PS4150 allows to better probe the core's dynamics, as proteins of the coat represent an important part of spore proteins, and FB122 gives information about the role of the large CaDPA depot for the mobility of core's components. We show that core's macromolecular mobility is not particularly constrained at the sub-nanosecond timescale in spite of its low water content as some dynamical characteristics as force constants are very close to those of vegetative bacteria such as Escherichia coli or to those of fully hydrated proteins. Although the force constants of the coatless mutant are similar to the wild-type's ones, it has lower mean square displacements (MSDs) at high Q showing that core macromolecules are somewhat more constrained than the rest of spore components. However, no behavior reflecting the glassy state regularly evoked in the literature could be drawn from our data. As hydration and macromolecules' mobility are highly correlated, the previous assumption, that core low water content might explain spores' exceptional resistance properties seems unlikely. Thus, we confirm recent theories, suggesting that core water is mostly as free as bulk water and proteins/macromolecules are fully hydrated. The germination of spores leads to a much less stable system with a force constant of 0.1 N/m and MSDs ~2.5 times higher at low Q than in the dormant state. DPA has also an influence on core mobility with a slightly lower force constant for the DPA-less mutant than for the wild-type, and MSDs that are ~ 1.8 times higher on average than for the wild-type at low Q. At high Q, germinated and DPA-less spores were very similar to the wild-type ones, showing that DPA and core compact structure might influence large amplitude motions rather than local dynamics of macromolecules.


Subject(s)
Bacillus subtilis/growth & development , Picolinic Acids/pharmacology , Spores, Bacterial/drug effects , Bacillus subtilis/chemistry , Bacillus subtilis/drug effects , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/growth & development , Kinetics , Mutation , Spores, Bacterial/chemistry , Spores, Bacterial/growth & development
4.
Rev Sci Instrum ; 90(2): 025106, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30831774

ABSTRACT

We report on a high pressure (HP) cell designed for the determination of the structure of molecular solutions by small-angle neutron scattering (SANS). The HP cell is fitted up with two thick metallic windows that make the device very resistant under hydrostatic pressures up to 600 MPa (or 6 kbar). The metallic windows are removable, offering the possibility to adapt the HP cell to a given study with the pressure desired on an appropriate spatial range to study the structure of various molecular solutions by SANS. In this context, we report the absorption, transmission, and scattering properties of different metallic windows. Finally, we describe, as a proof of principle, the solution structure changes of myoglobin, a small globular protein.

5.
Appl Environ Microbiol ; 80(23): 7196-205, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25217015

ABSTRACT

Norovirus (NoV) is one of the main causative agents of acute gastroenteritis worldwide. In temperate climates, outbreaks peak during the winter season. The mechanism by which climatic factors influence the occurrence of NoV outbreaks is unknown. We hypothesized that humidity is linked to NoV seasonality. Human NoV is not cultivatable, so we used cultivatable murine norovirus (MNV) as a surrogate to study its persistence when exposed to various levels of relative humidity (RH) from low (10% RH) to saturated (100% RH) conditions at 9 and 25°C. In addition, we conducted similar experiments with virus-like particles (VLPs) from the predominant GII-4 norovirus and studied changes in binding patterns to A, B, and O group carbohydrates that might reflect capsid alterations. The responses of MNV and VLP to humidity were somewhat similar, with 10 and 100% RH exhibiting a strong conserving effect for both models, whereas 50% RH was detrimental for MNV infectivity and VLP binding capacity. The data analysis suggested that absolute humidity (AH) rather than RH is the critical factor for keeping NoV infectious, with an AH below 0.007 kg water/kg air being favorable to NoV survival. Retrospective surveys of the meteorological data in Paris for the last 14 years showed that AH average values have almost always been below 0.007 kg water/kg air during the winter (i.e., 0.0046 ± 0.0014 kg water/kg air), and this finding supports the fact that low AH provides an ideal condition for NoV persistence and transmission during cold months.


Subject(s)
Caliciviridae Infections/epidemiology , Caliciviridae Infections/virology , Humidity , Norovirus/physiology , Animals , Blood Group Antigens/metabolism , Humans , Mice , Microbial Viability , Paris , Protein Binding , Seasons , Temperature , Virosomes/metabolism , Virus Attachment
SELECTION OF CITATIONS
SEARCH DETAIL