Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(2)2023 02 07.
Article in English | MEDLINE | ID: mdl-36851678

ABSTRACT

Retroviral integration site targeting is not random and plays a critical role in expression and long-term survival of the integrated provirus. To better understand the genomic environment surrounding retroviral integration sites, we performed a meta-analysis of previously published integration site data from evolutionarily diverse retroviruses, including new experimental data from HIV-1 subtypes A, B, C and D. We show here that evolutionarily divergent retroviruses exhibit distinct integration site profiles with strong preferences for integration near non-canonical B-form DNA (non-B DNA). We also show that in vivo-derived HIV-1 integration sites are significantly more enriched in transcriptionally silent regions and transcription-silencing non-B DNA features of the genome compared to in vitro-derived HIV-1 integration sites. Integration sites from individuals infected with HIV-1 subtype A, B, C or D viruses exhibited different preferences for common genomic and non-B DNA features. In addition, we identified several integration site hotspots shared between different HIV-1 subtypes, all of which were located in the non-B DNA feature slipped DNA. Together, these data show that although evolutionarily divergent retroviruses exhibit distinct integration site profiles, they all target non-B DNA for integration. These findings provide new insight into how retroviruses integrate into genomes for long-term survival.


Subject(s)
HIV Seropositivity , HIV-1 , Humans , Retroviridae/genetics , Genomics , DNA , HIV-1/genetics
2.
Nat Commun ; 14(1): 16, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627271

ABSTRACT

APOBEC3 (A3) proteins are host-encoded deoxycytidine deaminases that provide an innate immune barrier to retroviral infection, notably against HIV-1. Low levels of deamination are believed to contribute to the genetic evolution of HIV-1, while intense catalytic activity of these proteins can induce catastrophic hypermutation in proviral DNA leading to near-total HIV-1 restriction. So far, little is known about how A3 cytosine deaminases might impact HIV-1 proviral DNA integration sites in human chromosomal DNA. Using a deep sequencing approach, we analyze the influence of catalytic active and inactive APOBEC3F and APOBEC3G on HIV-1 integration site selections. Here we show that DNA editing is detected at the extremities of the long terminal repeat regions of the virus. Both catalytic active and non-catalytic A3 mutants decrease insertions into gene coding sequences and increase integration sites into SINE elements, oncogenes and transcription-silencing non-B DNA features. Our data implicates A3 as a host factor influencing HIV-1 integration site selection and also promotes what appears to be a more latent expression profile.


Subject(s)
HIV Infections , HIV-1 , Humans , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , HIV-1/genetics , HIV-1/metabolism , APOBEC-3G Deaminase/metabolism , Cytosine Deaminase/genetics , Cytosine Deaminase/metabolism , Proteins/metabolism , Anti-Retroviral Agents , Virus Integration/genetics , Cytidine/metabolism , APOBEC Deaminases/genetics , APOBEC Deaminases/metabolism
3.
Viruses ; 14(11)2022 11 11.
Article in English | MEDLINE | ID: mdl-36423103

ABSTRACT

The integration of the HIV-1 genome into the host genome is an essential step in the life cycle of the virus and it plays a critical role in the expression, long-term persistence, and reactivation of HIV expression. To better understand the local genomic environment surrounding HIV-1 proviruses, we assessed the influence of non-canonical B-form DNA (non-B DNA) on the HIV-1 integration site selection. We showed that productively and latently infected cells exhibit different integration site biases towards non-B DNA motifs. We identified a correlation between the integration sites of the latent proviruses and non-B DNA features known to potently influence gene expression (e.g., cruciform, guanine-quadruplex (G4), triplex, and Z-DNA). The reactivation potential of latent proviruses with latency reversal agents also correlated with their proximity to specific non-B DNA motifs. The perturbation of G4 structures in vitro using G4 structure-destabilizing or -stabilizing ligands resulted in a significant reduction in integration within 100 base pairs of G4 motifs. The stabilization of G4 structures increased the integration within 300-500 base pairs from G4 motifs, increased integration near transcription start sites, and increased the proportion of latently infected cells. Moreover, we showed that host lens epithelium-derived growth factor (LEDGF)/p75 and cleavage and polyadenylation specificity factor 6 (CPSF6) influenced the distribution of integration sites near several non-B DNA motifs, especially G4 DNA. Our findings identify non-B DNA motifs as important factors that influence productive and latent HIV-1 integration and the reactivation potential of latent proviruses.


Subject(s)
DNA, B-Form , G-Quadruplexes , HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV-1/genetics , Nucleotide Motifs , Virus Latency , DNA , Proviruses/genetics
4.
Cells ; 10(9)2021 09 13.
Article in English | MEDLINE | ID: mdl-34572049

ABSTRACT

Survival following Ebola virus (EBOV) infection correlates with the ability to mount an early and robust interferon (IFN) response. The host IFN-induced proteins that contribute to controlling EBOV replication are not fully known. Among the top genes with the strongest early increases in expression after infection in vivo is IFN-induced HERC5. Using a transcription- and replication-competent VLP system, we showed that HERC5 inhibits EBOV virus-like particle (VLP) replication by depleting EBOV mRNAs. The HERC5 RCC1-like domain was necessary and sufficient for this inhibition and did not require zinc finger antiviral protein (ZAP). Moreover, we showed that EBOV (Zaire) glycoprotein (GP) but not Marburg virus GP antagonized HERC5 early during infection. Our data identify a novel 'protagonist-antagonistic' relationship between HERC5 and GP in the early stages of EBOV infection that could be exploited for the development of novel antiviral therapeutics.


Subject(s)
Ebolavirus/physiology , Glycoproteins/metabolism , Hemorrhagic Fever, Ebola/prevention & control , Interferons/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Virion/drug effects , Virus Replication , Antiviral Agents/pharmacology , Glycoproteins/genetics , HeLa Cells , Hemorrhagic Fever, Ebola/metabolism , Hemorrhagic Fever, Ebola/virology , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/genetics , Virion/metabolism
5.
J Virol ; 92(13)2018 07 01.
Article in English | MEDLINE | ID: mdl-29669830

ABSTRACT

In humans, homologous to the E6-AP carboxyl terminus (HECT) and regulator of chromosome condensation 1 (RCC1)-like domain-containing protein 5 (HERC5) is an interferon-induced protein that inhibits replication of evolutionarily diverse viruses, including human immunodeficiency virus type 1 (HIV-1). To better understand the origin, evolution, and function of HERC5, we performed phylogenetic, structural, and functional analyses of the entire human small-HERC family, which includes HERC3, HERC4, HERC5, and HERC6. We demonstrated that the HERC family emerged >595 million years ago and has undergone gene duplication and gene loss events throughout its evolution. The structural topology of the RCC1-like domain and HECT domains from all HERC paralogs is highly conserved among evolutionarily diverse vertebrates despite low sequence homology. Functional analyses showed that the human small HERCs exhibit different degrees of antiviral activity toward HIV-1 and that HERC5 provides the strongest inhibition. Notably, coelacanth HERC5 inhibited simian immunodeficiency virus (SIV), but not HIV-1, particle production, suggesting that the antiviral activity of HERC5 emerged over 413 million years ago and exhibits species- and virus-specific restriction. In addition, we showed that both HERC5 and HERC6 are evolving under strong positive selection, particularly blade 1 of the RCC1-like domain, which we showed is a key determinant of antiviral activity. These studies provide insight into the origin, evolution, and biological importance of the human restriction factor HERC5 and the other HERC family members.IMPORTANCE Intrinsic immunity plays an important role as the first line of defense against viruses. Studying the origins, evolution, and functions of proteins responsible for effecting this defense will provide key information about virus-host relationships that can be exploited for future drug development. We showed that HERC5 is one such antiviral protein that belongs to an evolutionarily conserved family of HERCs with an ancient marine origin. Not all vertebrates possess all HERC members, suggesting that different HERCs emerged at different times during evolution to provide the host with a survival advantage. Consistent with this, two of the more recently emerged HERC members, HERC5 and HERC6, displayed strong signatures of having been involved in an ancient evolutionary battle with viruses. Our findings provide new insights into the evolutionary origin and function of the HERC family in vertebrate evolution, identifying HERC5 and possibly HERC6 as important effectors of intrinsic immunity in vertebrates.


Subject(s)
Antiviral Agents/metabolism , Aquatic Organisms , Evolution, Molecular , HIV Infections/virology , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Viral Proteins/metabolism , HIV Infections/genetics , HIV-1/physiology , Humans , Intracellular Signaling Peptides and Proteins/genetics , Phylogeny , Protein Conformation , Selection, Genetic , Viral Proteins/genetics
6.
J Virol Antivir Res ; 7(1)2018 04.
Article in English | MEDLINE | ID: mdl-29349092

ABSTRACT

BACKGROUND: Influenza A virus (IAV) is the etiologic agent of the febrile respiratory illness, commonly referred to as 'flu'. The lysosomal protease cathepsin B (CTSB) has shown to be involved in the lifecycle of various viruses. Here, we examined the role of CTSB in the IAV lifecycle. METHODS: CTSB-deficient (CTSB-/-) macrophages and the human lung epithelial cell line A549 cells treated with CA-074Me were infected with the A/Puerto Rico/8/34 strain of IAV (IAV-PR8). Viral entry and propagation were measured through quantitative real-time RT-PCR; production and localization of hemagglutinin (HA) protein in the infected host cells were analysed by Western blots, flow cytometry and confocal microscopy; production of progeny viruses were measured by a hemagglutination assay. RESULTS: CTSB-/- macrophages and CA-074Me-treated A549 cells had no defects in incorporating IAV-PR8 virions and permitting viral RNA synthesis. However, these cells produced significantly lower amounts of HA protein and progeny virions than wild-type or untreated cells. CONCLUSION: These data indicate that CTSB is involved in the expression of IAV-PR8 HA protein and subsequent optimal production of IAV-PR8 progeny virions. Targeting CTSB can be a novel therapeutic strategy for treating IAV infection.

7.
Retrovirology ; 8: 95, 2011 Nov 17.
Article in English | MEDLINE | ID: mdl-22093708

ABSTRACT

BACKGROUND: The identification and characterization of several interferon (IFN)-induced cellular HIV-1 restriction factors, defined as host cellular proteins or factors that restrict or inhibit the HIV-1 life cycle, have provided insight into the IFN response towards HIV-1 infection and identified new therapeutic targets for HIV-1 infection. To further characterize the mechanism underlying restriction of the late stages of HIV-1 replication, we assessed the ability of IFNbeta-induced genes to restrict HIV-1 Gag particle production and have identified a potentially novel host factor called HECT domain and RCC1-like domain-containing protein 5 (HERC5) that blocks a unique late stage of the HIV-1 life cycle. RESULTS: HERC5 inhibited the replication of HIV-1 over multiple rounds of infection and was found to target a late stage of HIV-1 particle production. The E3 ligase activity of HERC5 was required for blocking HIV-1 Gag particle production and correlated with the post-translational modification of Gag with ISG15. HERC5 interacted with HIV-1 Gag and did not alter trafficking of HIV-1 Gag to the plasma membrane. Electron microscopy revealed that the assembly of HIV-1 Gag particles was arrested at the plasma membrane, at an early stage of assembly. The mechanism of HERC5-induced restriction of HIV-1 particle production is distinct from the mechanism underlying HIV-1 restriction by the expression of ISG15 alone, which acts at a later step in particle release. Moreover, HERC5 restricted murine leukemia virus (MLV) Gag particle production, showing that HERC5 is effective in restricting Gag particle production of an evolutionarily divergent retrovirus. CONCLUSIONS: HERC5 represents a potential new host factor that blocks an early stage of retroviral Gag particle assembly. With no apparent HIV-1 protein that directly counteracts it, HERC5 may represent a new candidate for HIV/AIDS therapy.


Subject(s)
Gene Products, gag/metabolism , HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Virus Assembly , Cell Line , Cytokines/genetics , Cytokines/metabolism , Gene Products, gag/genetics , HIV-1/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Protein Processing, Post-Translational , Ubiquitins/genetics , Ubiquitins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...