Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS One ; 11(6): e0157620, 2016.
Article in English | MEDLINE | ID: mdl-27310015

ABSTRACT

We have recently described sustained clinical recovery associated with dampened neuroinflammation and remyelination following transplantation of neural precursor cells (NPCs) derived from human embryonic stem cells (hESCs) in a viral model of the human demyelinating disease multiple sclerosis. The hNPCs used in that study were derived by a novel direct differentiation method (direct differentiation, DD-NPCs) that resulted in a unique gene expression pattern when compared to hNPCs derived by conventional methods. Since the therapeutic potential of human NPCs may differ greatly depending on the method of derivation and culture, we wanted to determine whether NPCs differentiated using conventional methods would be similarly effective in improving clinical outcome under neuroinflammatory demyelinating conditions. For the current study, we utilized hNPCs differentiated from a human induced pluripotent cell line via an embryoid body intermediate stage (EB-NPCs). Intraspinal transplantation of EB-NPCs into mice infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in decreased accumulation of CD4+ T cells in the central nervous system that was concomitant with reduced demyelination at the site of injection. Dampened neuroinflammation and remyelination was correlated with a transient increase in CD4+FOXP3+ regulatory T cells (Tregs) concentrated within the peripheral lymphatics. However, compared to our earlier study, pathological improvements were modest and did not result in significant clinical recovery. We conclude that the genetic signature of NPCs is critical to their effectiveness in this model of viral-induced neurologic disease. These comparisons will be useful for understanding what factors are critical for the sustained clinical improvement.


Subject(s)
Coronavirus Infections/therapy , Embryoid Bodies/immunology , Hepatitis, Viral, Animal/therapy , Human Embryonic Stem Cells/immunology , Neural Stem Cells/transplantation , T-Lymphocytes, Regulatory/immunology , Animals , Biomarkers/metabolism , CD4 Antigens/genetics , CD4 Antigens/immunology , Cell Differentiation , Cell- and Tissue-Based Therapy/methods , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Disease Models, Animal , Embryoid Bodies/cytology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Gene Expression , Hepatitis, Viral, Animal/immunology , Hepatitis, Viral, Animal/pathology , Hepatitis, Viral, Animal/virology , Human Embryonic Stem Cells/cytology , Humans , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Multiple Sclerosis/therapy , Murine hepatitis virus/growth & development , Murine hepatitis virus/pathogenicity , Myelin Sheath/immunology , Neural Stem Cells/cytology , Neural Stem Cells/immunology , Organ Specificity , T-Lymphocytes, Regulatory/pathology
2.
Sci Rep ; 5: 13317, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26304831

ABSTRACT

Many studies have suggested the significance of glycosyltransferase-mediated macromolecule glycosylation in the regulation of pluripotent states in human pluripotent stem cells (hPSCs). Here, we observed that the sialyltransferase ST6GAL1 was preferentially expressed in undifferentiated hPSCs compared to non-pluripotent cells. A lectin which preferentially recognizes α-2,6 sialylated galactosides showed strong binding reactivity with undifferentiated hPSCs and their glycoproteins, and did so to a much lesser extent with differentiated cells. In addition, downregulation of ST6GAL1 in undifferentiated hPSCs led to a decrease in POU5F1 (also known as OCT4) protein and significantly altered the expression of many genes that orchestrate cell morphogenesis during differentiation. The induction of cellular pluripotency in somatic cells was substantially impeded by the shRNA-mediated suppression of ST6GAL1, partially through interference with the expression of endogenous POU5F1 and SOX2. Targeting ST6GAL1 activity with a sialyltransferase inhibitor during cell reprogramming resulted in a dose-dependent reduction in the generation of human induced pluripotent stem cells (hiPSCs). Collectively, our data indicate that ST6GAL1 plays an important role in the regulation of pluripotency and differentiation in hPSCs, and the pluripotent state in human cells can be modulated using pharmacological tools to target sialyltransferase activity.


Subject(s)
Antigens, CD/metabolism , Cell Differentiation/physiology , Lectins/metabolism , N-Acetylneuraminic Acid/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/physiology , Sialyltransferases/metabolism , Enzyme Activation , Gene Expression Regulation, Developmental/physiology , Gene Expression Regulation, Enzymologic/physiology , Glycosylation , Humans
3.
PLoS One ; 10(2): e0118307, 2015.
Article in English | MEDLINE | ID: mdl-25714340

ABSTRACT

The self-renewal and differentiation capacities of human pluripotent stem cells (hPSCs) make them a promising source of material for cell transplantation therapy, drug development, and studies of cellular differentiation and development. However, the large numbers of cells necessary for many of these applications require extensive expansion of hPSC cultures, a process that has been associated with genetic and epigenetic alterations. We have performed a combinatorial study on both hESCs and hiPSCs to compare the effects of enzymatic vs. mechanical passaging, and feeder-free vs. mouse embryonic fibroblast feeder substrate, on the genetic and epigenetic stability and the phenotypic characteristics of hPSCs. In extensive experiments involving over 100 continuous passages, we observed that both enzymatic passaging and feeder-free culture were associated with genetic instability, higher rates of cell proliferation, and persistence of OCT4/POU5F1-positive cells in teratomas, with enzymatic passaging having the stronger effect. In all combinations of culture conditions except for mechanical passaging on feeder layers, we noted recurrent deletions in the genomic region containing the tumor suppressor gene TP53, which was associated with decreased mRNA expression of TP53, as well as alterations in the expression of several downstream genes consistent with a decrease in the activity of the TP53 pathway. Among the hESC cultures, we also observed culture-associated variations in global gene expression and DNA methylation. The effects of enzymatic passaging and feeder-free conditions were also observed in hiPSC cultures. Our results highlight the need for careful assessment of the effects of culture conditions on cells intended for clinical therapies.


Subject(s)
Epigenesis, Genetic , Genome, Human , Genomic Instability , Human Embryonic Stem Cells/metabolism , Cell Culture Techniques , Cell Differentiation , Cell Line , Cell Self Renewal , Cell Transformation, Neoplastic/genetics , Cells, Cultured , Chromosome Aberrations , Chromosome Deletion , Chromosome Duplication , Chromosomes, Human, Pair 12 , Chromosomes, Human, Pair 17 , Chromosomes, Human, Pair 20 , DNA Methylation , Gene Expression Profiling , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/pathology , Humans , Phenotype , Pluripotent Stem Cells/metabolism , Polymorphism, Single Nucleotide , Time Factors , Tumor Suppressor Protein p53/genetics
4.
Genomics ; 104(5): 358-67, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25179373

ABSTRACT

5-hydroxymethylcytosine (5hmC), an oxidized derivative of 5-methylcytosine (5mC), has been implicated as an important epigenetic regulator of mammalian development. Current procedures use DNA sequencing methods to discriminate 5hmC from 5mC, limiting their accessibility to the scientific community. Here we report a method that combines TET-assisted bisulfite conversion with Illumina 450K DNA methylation arrays for a low-cost high-throughput approach that distinguishes 5hmC and 5mC signals at base resolution. Implementing this approach, termed "TAB-array", we assessed DNA methylation dynamics in the differentiation of human pluripotent stem cells into cardiovascular progenitors and neural precursor cells. With the ability to discriminate 5mC and 5hmC, we identified a large number of novel dynamically methylated genomic regions that are implicated in the development of these lineages. The increased resolution and accuracy afforded by this approach provides a powerful means to investigate the distinct contributions of 5mC and 5hmC in human development and disease.


Subject(s)
5-Methylcytosine/metabolism , Cytosine/analogs & derivatives , Pluripotent Stem Cells/metabolism , Sequence Analysis, DNA/methods , Cell Differentiation , Cells, Cultured , Cytosine/metabolism , DNA Methylation , Epigenesis, Genetic , Humans , Molecular Sequence Data , Myoblasts, Cardiac/metabolism , Neural Stem Cells
5.
Stem Cell Reports ; 2(6): 825-37, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24936469

ABSTRACT

Using a viral model of the demyelinating disease multiple sclerosis (MS), we show that intraspinal transplantation of human embryonic stem cell-derived neural precursor cells (hNPCs) results in sustained clinical recovery, although hNPCs were not detectable beyond day 8 posttransplantation. Improved motor skills were associated with a reduction in neuroinflammation, decreased demyelination, and enhanced remyelination. Evidence indicates that the reduced neuroinflammation is correlated with an increased number of CD4(+)CD25(+)FOXP3(+) regulatory T cells (Tregs) within the spinal cords. Coculture of hNPCs with activated T cells resulted in reduced T cell proliferation and increased Treg numbers. The hNPCs acted, in part, through secretion of TGF-ß1 and TGF-ß2. These findings indicate that the transient presence of hNPCs transplanted in an animal model of MS has powerful immunomodulatory effects and mediates recovery. Further investigation of the restorative effects of hNPC transplantation may aid in the development of clinically relevant MS treatments.


Subject(s)
Multiple Sclerosis/therapy , Neural Stem Cells/cytology , Animals , CD4 Antigens/metabolism , Cells, Cultured , Disease Models, Animal , Forkhead Transcription Factors/metabolism , Humans , Immunohistochemistry , Interleukin-2 Receptor alpha Subunit/metabolism , Mice , Neural Stem Cells/metabolism , Neural Stem Cells/physiology , Stem Cell Transplantation , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/physiology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta2/metabolism
6.
Curr Protoc Stem Cell Biol ; 26: 2D.16.1-2D.16.16, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-24510791

ABSTRACT

This unit describes the preparation and transplantation of human neural precursor cells (hNPCs) and mouse neural precursor cells (mNPCs) into the thoracic region of the mouse spinal cord. The techniques in this unit also describe how to prepare the mouse for surgery by performing a laminectomy to expose the spinal cord for transplantation. NPCs genetically labeled with eGFP transplanted into the spinal cord of a mouse following viral-mediated demyelination can efficiently be detected via eGFP expression. Transplantation of these cells into the spinal cord is an efficacious way to determine their effects in neurological disorders such as multiple sclerosis, Alzheimer's disease, and spinal cord injury.


Subject(s)
Neural Stem Cells/cytology , Neural Stem Cells/transplantation , Spinal Cord/pathology , Stem Cell Transplantation/methods , Animals , Green Fluorescent Proteins/metabolism , Humans , Mice , Spinal Cord/surgery
7.
Cell Stem Cell ; 9(2): 113-8, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21802386

ABSTRACT

Human induced pluripotent stem cells (hiPSCs) have been generated by reprogramming a number of different somatic cell types using a variety of approaches. In addition, direct reprogramming of mature cells from one lineage to another has emerged recently as an alternative strategy for generating cell types of interest. Here we show that a combination of a microRNA (miR-124) and two transcription factors (MYT1L and BRN2) is sufficient to directly reprogram postnatal and adult human primary dermal fibroblasts (mesoderm) to functional neurons (ectoderm) under precisely defined conditions. These human induced neurons (hiNs) exhibit typical neuronal morphology and marker gene expression, fire action potentials, and produce functional synapses between each other. Our findings have major implications for cell-replacement strategies in neurodegenerative diseases, disease modeling, and neural developmental studies.


Subject(s)
Cell Culture Techniques/methods , Cellular Reprogramming/genetics , Culture Media/pharmacology , Fibroblasts/cytology , Fibroblasts/metabolism , Neurons/cytology , Neurons/metabolism , Adult , Cell Differentiation/drug effects , Cellular Reprogramming/drug effects , Dermis/cytology , Fibroblasts/drug effects , Humans , Infant, Newborn , Neurons/drug effects , Synapses/drug effects , Synapses/metabolism
8.
J Acoust Soc Am ; 123(3): 1427-38, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18345832

ABSTRACT

The use of a single actuator tuned to an optimum impedance to control the sound power radiated from a turbulent boundary layer (TBL) excited aircraft panel into the aircraft interior is examined. An approach to calculating the optimum impedance is defined and the limitations on the reduction in radiated power by a single actuator tuned to that impedance are examined. It is shown that there are too many degrees of freedom in the TBL and in the radiation modes of the panel to allow a single actuator to control the radiated power. However, if the panel modes are lightly damped and well separated in frequency, significant reductions are possible. The implementation of a controller that presents a desired impedance to a structure is demonstrated in a laboratory experiment, in which the structure is a mass. The performance of such a controller on an aircraft panel is shown to be effective, if the actuator impedance is similar to but not the same as the desired impedance, provided the panel resonances are well separated in frequency and lightly damped.


Subject(s)
Models, Theoretical , Noise , Acoustics , Aviation , Electric Impedance , Humans , Radiation
9.
Curr Opin Chem Biol ; 11(3): 252-8, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17493865

ABSTRACT

Small molecule libraries have been used successfully to probe several biological systems. Recent work has translated these successes across to the field of stem cell biology. Stem cells hold promise for both modeling of early development as well as having therapeutic potential. Enhanced understanding of the molecular mechanisms that control stem cell fates as well as an improved ability to manipulate cell populations are required. Known mechanistic chemical compounds have been used with stem cells to accomplish these two goals. More recently, through the utilization of high fitness libraries in phenotype-based screens, several small molecules that control self-renewal and differentiation in stem cells have been identified. These small molecules provide useful chemical tools for both basic research and practical applications.


Subject(s)
Stem Cells/cytology , Humans , Stem Cells/drug effects
10.
Proc Biol Sci ; 270(1510): 19-28, 2003 Jan 07.
Article in English | MEDLINE | ID: mdl-12590767

ABSTRACT

The maintenance of sex is an unresolved paradox in evolutionary biology, given the inherent twofold fitness advantage for asexuals. Parasitic helminths offer a unique opportunity to address this enigma. Parasites that can create novel antigenic strains are able to escape pre-existing host immunity. Viruses produce diversity through mutation with rapid clonal proliferation. The long generation times of helminth parasites prevent them from adopting this strategy. Instead, we argue that sexual reproduction enables parasitic helminths to rapidly generate strain diversity. We use both a stochastic, individual-based model and a simple analytical model to assess the selective value of sexual versus asexual reproduction in helminth parasites. We demonstrate that sexual reproduction can more easily produce and maintain strain diversity than asexual reproduction for long-lived parasites. We also show that sexual parasite populations are resistant to invasion by rare asexual mutants. These results are robust to high levels of cross-immunity between strains. We suggest that the enhancement of strain diversity, despite stochastic extinction of strains, may be critical to the evolutionary success of sex in long-lived parasites.


Subject(s)
Biological Evolution , Helminths/physiology , Reproduction/physiology , Animals , Female , Genetic Variation , Helminths/genetics , Host-Parasite Interactions , Male , Models, Biological , Population Density , Stochastic Processes , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...