Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36678626

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder whose pathophysiology includes the abnormal accumulation of proteins (e.g., ß-amyloid), oxidative stress, and alterations in neurotransmitter levels, mainly acetylcholine. Here we present a comparative study of the effect of extracts obtained from endemic Argentinian species of valerians, namely V. carnosa Sm., V. clarionifolia Phil. and V. macrorhiza Poepp. ex DC from Patagonia and V. ferax (Griseb.) Höck and V. effusa Griseb., on different AD-related biological targets. Of these anxiolytic, sedative and sleep-inducing valerians, V. carnosa proved the most promising and was assayed in vivo. All valerians inhibited acetylcholinesterase (IC50 between 1.08-12.69 mg/mL) and butyrylcholinesterase (IC50 between 0.0019-1.46 mg/mL). They also inhibited the aggregation of ß-amyloid peptide, were able to chelate Fe2+ ions, and exhibited a direct relationship between antioxidant capacity and phenolic content. Moreover, V. carnosa was able to inhibit human monoamine oxidase A (IC50: 0.286 mg/mL (0.213-0.384)). A daily intake of aqueous V. carnosa extract by male Swiss mice (50 and 150 mg/kg/day) resulted in anxiolytic and antidepressant-like behavior and improved spatial memory. In addition, decreased AChE activity and oxidative stress markers were observed in treated mouse brains. Our studies contribute to the development of indigenous herbal medicines as therapeutic agents for AD.

2.
Learn Mem ; 29(5): 120-125, 2022 05.
Article in English | MEDLINE | ID: mdl-35428728

ABSTRACT

We observed differences in cognitive functions between middle-aged female and male Wistar rats. Both (like youngsters) discriminated new versus familiar objects, showing similar short- and long-term memory (STM and LTM, respectively). Only females show robust LTM for new location of an object. Both successfully form LTM of inhibitory avoidance, though males appeared to be amnesic for memory persistence. Habituation, locomotion, horizontal exploration, "stereotypies," fear, and anxiety-like behavior were similar for both, while vertical exploration was significantly higher in middle-aged and younger females. Therefore, sex-dependent differences in some cognitive functions and behaviors must be considered when designing and interpreting learning and memory studies.


Subject(s)
Learning , Memory, Long-Term , Animals , Anxiety , Avoidance Learning , Fear , Female , Male , Memory, Short-Term , Rats , Rats, Wistar
3.
Neuropharmacology ; 201: 108837, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34653442

ABSTRACT

The complex nature of neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD) calls for multidirectional treatment. Restoring neurotransmitter levels by combined inhibition of cholinesterases (ChEs) and monoamine oxidases (MAOs, MAO-A and MAO-B), in conjunction with strategies to counteract amyloid ß (Aß) aggregation, may constitute a therapeutically strong multi-target approach for the treatment of NDDs. Chalcones are a subgroup of flavonoids with a broad spectrum of biological activity. We report here the synthesis of 2'-hydroxychalcones as MAO-A and MAO-B inhibitors. Compounds 5c (IC50 = 0.031 ± 0.001 µM), 5a (IC50 = 0.084 ± 0.003 µM), 2c (IC50 = 0.095 ± 0.019 µM) and 2a (IC50 = 0.111 ± 0.006 µM) were the most potent, selective and reversible inhibitors of human (h)MAO-B isoform. hMAO-B inhibitors 1a, 2a and 5a also inhibited murine MAO-B in vivo in mouse brain homogenates. Molecular modelling rationalised the binding mode of 2'-hydroxychalcones in the active site of hMAO-B. Additionally, several derivatives inhibited murine acetylcholinesterase (mAChE) (IC50 values from 4.37 ± 0.83 µM to 15.17 ± 6.03 µM) and reduced the aggregation propensity of Aß. Moreover, some derivatives bound to the benzodiazepine binding site (BDZ-bs) of the γ-aminobutyric acid A (GABAA) receptors (1a and 2a with Ki = 4.9 ± 1.1 µM and 5.0 ± 1.1 µM, respectively), and exerted sedative and/or anxiolytic like effects on mice. The biological results reported here on 2'-hydroxychalcones provide an extension to previous studies on chalcone scaffold and show them as a potential treatment strategy for NDDs and their associated comorbidities.


Subject(s)
Alzheimer Disease/drug therapy , Chalcones/administration & dosage , Chalcones/pharmacology , Parkinson Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Anti-Anxiety Agents , Binding Sites , Brain/metabolism , Chalcones/chemistry , Chalcones/metabolism , Cholinesterases/metabolism , In Vitro Techniques , Male , Mice , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors , Parkinson Disease/metabolism , Rats, Wistar , Receptors, GABA-A/metabolism , Synaptic Transmission/drug effects
4.
Heliyon ; 6(12): e05691, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33367125

ABSTRACT

Folkloric or galenic preparations of valerian roots and rhizomes have been used as sedatives/anxiolytics and sleep inducers since ancient times. "Valerianas" are plants that naturally grow in our region. Although some of them are used in folk medicine, they lack scientific information. We performed a comparative study of the phytochemical composition and the potential in vivo effects of ethanolic extracts of argentine valerian species: Valeriana carnosa Sm., V. clarionifolia Phil. and V. macrorhiza Poepp. ex DC., from "Patagonia Argentina"; V. ferax (Griseb.) Höck and V. effusa Griseb., from the central part of our country, and V. officinalis (as the reference plant). All these plants were rich in phenolic compounds, evidenced the presence of ligands for the benzodiazepine binding site of the GABAA receptor and were able to induce sedation as assessed by loss-of-righting reflex assays (500 mg/kg, i.p.). Mice treated with V. macrorhiza, V. carnosa and V. ferax extracts showed reduced exploratory behaviors while V. clarionifolia produced anxiolytic-like activities (500 mg/kg, i.p.) in the Hole board test. Oral administrations (300 mg/kg and 600 mg/kg, p.o.) evidenced sedative effects for V. ferax and anxiolytic-like properties for V. macrorhiza, V. carnosa and V. clarionifolia extracts. Our native valerian species are active on the CNS, validating its folkloric use as anxiolytic/sedative and sleep enhancers.

5.
J Med Chem ; 63(3): 1361-1387, 2020 02 13.
Article in English | MEDLINE | ID: mdl-31917923

ABSTRACT

The resurgence of interest in monoamine oxidases (MAOs) has been fueled by recent correlations of this enzymatic activity with cardiovascular, neurological, and oncological disorders. This has promoted increased research into selective MAO-A and MAO-B inhibitors. Here, we shed light on how selective inhibition of MAO-A and MAO-B can be achieved by geometric isomers of cis- and trans-1-propargyl-4-styrylpiperidines. While the cis isomers are potent human MAO-A inhibitors, the trans analogues selectively target only the MAO-B isoform. The inhibition was studied by kinetic analysis, UV-vis spectrum measurements, and X-ray crystallography. The selective inhibition of the MAO-A and MAO-B isoforms was confirmed ex vivo in mouse brain homogenates, and additional in vivo studies in mice show the therapeutic potential of 1-propargyl-4-styrylpiperidines for central nervous system disorders. This study represents a unique case of stereoselective activity of cis/trans isomers that can discriminate between structurally related enzyme isoforms.


Subject(s)
Antidepressive Agents/therapeutic use , Depression/drug therapy , Monoamine Oxidase Inhibitors/therapeutic use , Piperidines/therapeutic use , Styrenes/therapeutic use , Animals , Antidepressive Agents/chemical synthesis , Antidepressive Agents/metabolism , Brain , Catalytic Domain , Humans , Isoenzymes/antagonists & inhibitors , Kinetics , Male , Mice , Molecular Docking Simulation , Molecular Structure , Monoamine Oxidase/chemistry , Monoamine Oxidase/classification , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/metabolism , Piperidines/chemical synthesis , Piperidines/metabolism , Protein Binding , Stereoisomerism , Structure-Activity Relationship , Styrenes/chemical synthesis , Styrenes/metabolism
6.
Front Aging Neurosci ; 12: 585873, 2020.
Article in English | MEDLINE | ID: mdl-33551786

ABSTRACT

Accruing evidence supports the hypothesis that memory deficits in early Alzheimer Disease (AD) might be due to synaptic failure caused by accumulation of intracellular amyloid beta (Aß) oligomers, then secreted to the extracellular media. Transgenic mouse AD models provide valuable information on AD pathology. However, the failure to translate these findings to humans calls for models that better recapitulate the human pathology. McGill-R-Thy1-APP transgenic (Tg) rat expresses the human amyloid precursor protein (APP751) with the Swedish and Indiana mutations (of familial AD), leading to an AD-like slow-progressing brain amyloid pathology. Therefore, it offers a unique opportunity to investigate learning and memory abilities at early stages of AD, when Aß accumulation is restricted to the intracellular compartment, prior to plaque deposition. Our goal was to further investigate early deficits in memory, particularly long-term memory in McGill-R-Thy1-APP heterozygous (Tg+/-) rats. Short-term- and long-term habituation to an open field were preserved in 3-, 4-, and 6-month-old (Tg+/-). However, long-term memory of inhibitory avoidance to a foot-shock, novel object-recognition and social approaching behavior were seriously impaired in 4-month-old (Tg+/-) male rats, suggesting that they are unable to either consolidate and/or evoke such associative and discriminative memories with aversive, emotional and spatial components. The long-term memory deficits were accompanied by increased transcript levels of genes relevant to synaptic plasticity, learning and memory processing in the hippocampus, such as Grin2b, Dlg4, Camk2b, and Syn1. Our findings indicate that in addition to the previously well-documented deficits in learning and memory, McGill-R-Thy1-APP rats display particular long-term-memory deficits and deep social behavior alterations at pre-plaque early stages of the pathology. This highlights the importance of Aß oligomers and emphasizes the validity of the model to study AD-like early processes, with potentially predictive value.

7.
Heliyon ; 5(3): e01376, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30949609

ABSTRACT

Anxiety disorders, depression and pain are highly prevalent pathologies. Their pharmacotherapy is associated with unwanted side effects; hence there is a clinical need to develop more effective drugs with fewer adverse reactions. Chalcones are one of the major classes of naturally occurring compounds. Chalcones and their derivatives have a huge importance in medicinal chemistry, displaying a wide range of pharmacological activities including anti-inflammatory, antimicrobial, antioxidant, cytotoxic and antitumor actions. The aim of this work was to evaluate chalcone effects on different targets involved in these pathologies. We have synthesized a series of simple chalcone derivatives taking common structural requirements described in literature related to their anxiolytic-like, antidepressant-like and/or antinociceptive properties into account. Furthermore, their potential in vitro effects towards different targets involved in these pathologies were evaluated. We have obtained twenty chalcones with moderate to high yields and assessed their ability to bind distinctive receptors, from rat brain homogenates, by displacement of labelled specific ligands: [3H] FNZ (binding site of benzodiazepines/GABAA), [3H] 8-OH-DPAT (serotonin 5-HT1A) and [3H] DAMGO (µ-opioid). Those compounds that showed the better in vitro activities were evaluated in mice using different behavioural tasks. In vivo results showed that 5'-methyl-2'-hydroxychalcone (9) exerted anxiolytic-like effects in mice in the plus maze test. While chalcone nuclei (1) revealed antidepressant-like activities in the tail suspension test. In addition, the novel 5'-methyl-2'-hydroxy-3'-nitrochalcone (12) exhibited antinociceptive activity in acute chemical and thermal nociception tests (writhing and hot plate tests). In conclusion, chalcones are thus promising compounds for the development of novel drugs with central nervous system (CNS) actions.

8.
Front Behav Neurosci ; 10: 242, 2016.
Article in English | MEDLINE | ID: mdl-28133447

ABSTRACT

It is widely accepted that NMDA receptors (NMDAR) are required for learning and memory formation, and for synaptic plasticity induction. We have previously shown that hippocampal GluN1 and GluN2A NMDAR subunits significantly increased following habituation of rats to an open field (OF), while GluN2B remained unchanged. Similar results were obtained after CA1-long-term potentiation (LTP) induction in rat hippocampal slices. Other studies have also shown NMDAR up regulation at earlier and later time points after LTP induction or learning acquisition. In this work, we have studied NMDAR subunits levels in the hippocampus and prefrontal cortex (PFC) after OF habituation and after object recognition (OR), to find out whether rising of NMDAR subunits is a general and structure-specific feature during memory formation. In 1, 2 and 3 month old rats there was an increase in hippocampal GluN1 and GluN2A, but not in GluN2B levels 70 min after OF habituation. This rise overlaps with early phase of memory consolidation, suggesting a putative relationship between them. The increases fell down to control levels 90 min after training. Similar results were obtained in the hippocampus of adult rats 70 min after OR training, without changes in PFC. Following OF test or OR discrimination phase, NMDAR subunits remained unchanged. Hence, rising of hippocampal GluN1 and GluN2A appears to be a general feature after novel "spatial/discrimination" memory acquisition. To start investigating the dynamics and possible mechanisms of these changes, we have studied hippocampal neuron cultures stimulated by KCl to induce plasticity. GluN1 and GluN2A increased both in dendrites and neuronal bodies, reaching a maximum 75 min later and returning to control levels at 90 min. Translation and/or transcription and mobilization differentially contribute to this rise in subunits in bodies and dendrites. Our results showed that the NMDAR subunits increase follows a similar time course both in vitro and in vivo. These changes happen in the hippocampus where a spatial representation of the environment is being formed making possible short term and long term memories (STM and LTM); appear to be structure-specific; are preserved along life; and could be related to synaptic tagging and/or to memory consolidation of new spatial/discrimination information.

9.
Learn Mem ; 21(11): 634-45, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25322799

ABSTRACT

The muscarinic cholinergic receptor (MAChR) blockade with scopolamine either extended or restricted to the hippocampus, before or after training in inhibitory avoidance (IA) caused anterograde or retrograde amnesia, respectively, in the rat, because there was no long-term memory (LTM) expression. Adult Wistar rats previously exposed to one or two open-field (OF) sessions of 3 min each (habituated), behaved as control animals after a weak though over-threshold training in IA. However, after OF exposure, IA LTM was formed and expressed in spite of an extensive or restricted to the hippocampus MAChR blockade. It was reported that during and after OF exposure and reexposure there was an increase in both hippocampal and cortical ACh release that would contribute to "prime the substrate," e.g., by lowering the synaptic threshold for plasticity, leading to LTM consolidation. In the frame of the "synaptic tagging and capture" hypothesis, plasticity-related proteins synthesized during/after the previous OF could facilitate synaptic plasticity for IA in the same structure. However, IA anterograde amnesia by hippocampal protein synthesis inhibition with anisomycin was also prevented by two OF exposures, strongly suggesting that there would be alternative interpretations for the role of protein synthesis in memory formation and that another structure could also be involved in this "OF effect."


Subject(s)
Amnesia/chemically induced , Avoidance Learning/physiology , Memory, Long-Term/physiology , Muscarinic Antagonists/pharmacology , Scopolamine/pharmacology , Animals , Avoidance Learning/drug effects , Electroshock , Learning , Male , Memory, Long-Term/drug effects , Rats , Rats, Wistar
10.
J Physiol Paris ; 108(4-6): 263-9, 2014.
Article in English | MEDLINE | ID: mdl-25132342

ABSTRACT

N-methyl-D-aspartate receptors (NMDAR) are thought to be responsible for switching synaptic activity specific patterns into long-term changes in synaptic function and structure, which would support learning and memory. Hippocampal NMDAR blockade impairs memory consolidation in rodents, while NMDAR stimulation improves it. Adult rats that explored twice an open field (OF) before a weak though overthreshold training in inhibitory avoidance (IA), expressed IA long-term memory in spite of the hippocampal administration of MK-801, which currently leads to amnesia. Those processes would involve different NMDARs. The selective blockade of hippocampal GluN2B-containing NMDAR with ifenprodil after training promoted memory in an IA task when the training was weak, suggesting that this receptor negatively modulates consolidation. In vivo, after 1h of an OF exposure-with habituation to the environment-, there was an increase in GluN1 and GluN2A subunits in the rat hippocampus, without significant changes in GluN2B. Coincidentally, in vitro, in both rat hippocampal slices and neuron cultures there was an increase in GluN2A-NMDARs surface expression at 30min; an increase in GluN1 and GluN2A levels at about 1h after LTP induction was also shown. We hypothesize that those changes in NMDAR composition could be involved in the "anti-amnesic effect" of the previous OF. Along certain time interval, an increase in GluN1 and GluN2A would lead to an increase in synaptic NMDARs, facilitating synaptic plasticity and memory; while then, an increase in GluN2A/GluN2B ratio could protect the synapse and the already established plasticity, perhaps saving the specific trace.


Subject(s)
Hippocampus/physiology , Learning/physiology , Memory/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Humans , Long-Term Potentiation , Synapses/metabolism
11.
Am J Physiol Cell Physiol ; 306(4): C396-406, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24336653

ABSTRACT

Acid-sensing ion channels (ASIC) open in response to extracellular acidosis. ASIC1a, a particular subtype of these channels, has been described to have a postsynaptic distribution in the brain, being involved not only in ischemia and epilepsy, but also in fear and psychiatric pathologies. High-frequency stimulation of skeletal motor nerve terminals (MNTs) can induce presynaptic pH changes in combination with an acidification of the synaptic cleft, known to contribute to muscle fatigue. Here, we studied the role of ASIC1a channels on neuromuscular transmission. We combined a behavioral wire hanging test with electrophysiology, pharmacological, and immunofluorescence techniques to compare wild-type and ASIC1a lacking mice (ASIC1a (-/-) knockout). Our results showed that 1) ASIC1a (-/-) female mice were weaker than wild type, presenting shorter times during the wire hanging test; 2) spontaneous neurotransmitter release was reduced by ASIC1a activation, suggesting a presynaptic location of these channels at individual MNTs; 3) ASIC1a-mediated effects were emulated by extracellular local application of acid saline solutions (pH = 6.0; HEPES/MES-based solution); and 4) immunofluorescence techniques revealed the presence of ASIC1a antigens on MNTs. These results suggest that ASIC1a channels might be involved in controlling neuromuscular transmission, muscle contraction and fatigue in female mice.


Subject(s)
Acid Sensing Ion Channels/metabolism , Motor Neurons/metabolism , Muscle, Skeletal/innervation , Neuromuscular Junction/metabolism , Synaptic Transmission , Acid Sensing Ion Channels/deficiency , Acid Sensing Ion Channels/genetics , Animals , Behavior, Animal , Electric Stimulation , Evoked Potentials, Motor , Female , Hand Strength , Hydrogen-Ion Concentration , Male , Mice , Mice, Knockout , Motor Endplate/metabolism , Muscle Contraction , Muscle Fatigue , Presynaptic Terminals/metabolism , Sex Factors , Time Factors
12.
Behav Brain Res ; 234(2): 184-91, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22750535

ABSTRACT

Adenosine A(1) receptor antagonists are of potential value in the treatment of cognitive dysfunction. We have developed compound AJ23 (7-methyl-1-phenyl-1,8-dihydro-pyrazolo-(3,4d)(1,2,4)-triazolo(1,5a)-pyrimidin-4-one) as a novel, non-xanthine based antagonist at A(1) receptors. It has micromolar affinity at human A(1) receptors with a 45-fold selectivity for A(1) over A(2A) receptors and little affinity for many other receptors and transporters tested in a screening panel. AJ23 blocks A(1) receptors in the rat hippocampus, increasing the baseline size of excitatory post-synaptic potentials and blocking the inhibitory effects of adenosine. When administered directly into the rodent hippocampus this compound improves consolidation in a step-down avoidance learning task. The results suggest that AJ23 or derivatives may represent possible leads for further chemical development towards a chemically novel group of antagonists at A(1) receptors with potential value as cognitive enhancers.


Subject(s)
Avoidance Learning/drug effects , Inhibition, Psychological , Purinergic P1 Receptor Antagonists/pharmacology , Pyrimidines/pharmacology , Retention, Psychology/drug effects , Adenosine/pharmacology , Analysis of Variance , Animals , CA1 Region, Hippocampal/drug effects , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Drug Administration Schedule , Drug Interactions , Electric Stimulation , Excitatory Postsynaptic Potentials/drug effects , HEK293 Cells , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , In Vitro Techniques , Male , Protein Binding/drug effects , Pyrimidines/chemistry , Rats , Rats, Wistar , Reaction Time/drug effects , Structure-Activity Relationship , Triazines/pharmacokinetics , Triazoles/pharmacokinetics , Tritium/pharmacokinetics , Xanthines/pharmacokinetics
13.
Neurochem Res ; 34(8): 1363-71, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19191026

ABSTRACT

The five muscarinic acetylcholine receptors (M(1)-M(5)) are differentially expressed in the brain. M(2) and M(4) are coupled to inhibition of stimulated adenylyl cyclase, while M(1), M(3) and M(5) are mainly coupled to the phosphoinositide pathway. We studied the muscarinic receptor regulation of adenylyl cyclase activity in the rat hippocampus, compared to the striatum and amygdala. Basal and forskolin-stimulated adenylyl cyclase activity was higher in the striatum but the muscarinic inhibition was much lower. Highly selective muscarinic toxins MT1 and MT2-affinity order M(1) > or = M(4) >> others-and MT3-highly selective M(4) antagonist-did not show significant effects on basal or forskolin-stimulated cyclic AMP production but, like scopolamine, counteracted oxotremorine inhibition. Since MTs have negligible affinity for M(2), M(4) would be the main subtype responsible for muscarinic inhibition of forskolin-stimulated enzyme. Dopamine stimulated a small fraction of the enzyme (3.1% in striatum, 1.3% in the hippocampus). Since MT3 fully blocked muscarinic inhibition of dopamine-stimulated enzyme, M(4) receptor would be responsible for this regulation.


Subject(s)
Hippocampus/enzymology , Muscarinic Antagonists/pharmacology , Neostriatum/enzymology , Receptor, Muscarinic M4/drug effects , Adenylyl Cyclases/metabolism , Amygdala/drug effects , Amygdala/physiology , Animals , Colforsin/pharmacology , Cyclic AMP/biosynthesis , Dopamine/pharmacology , Dose-Response Relationship, Drug , Hippocampus/drug effects , Male , Muscarinic Agonists/pharmacology , Neostriatum/drug effects , Oxotremorine/pharmacology , Rats , Rats, Wistar , Receptor, Muscarinic M4/agonists , Receptor, Muscarinic M4/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...