Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Viruses ; 16(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38932127

ABSTRACT

Bovine torovirus (BToV) is an enteric pathogen that may cause diarrhea in calves and adult cattle, which could result in economic losses due to weight loss and decreased milk production. This study aimed to report the presence, the genetic characterization and the evolution of BToV in calves in Uruguay. BToV was detected in 7.9% (22/278) of fecal samples, being identified in dairy (9.2%, 22/239) but not beef (0.0%, 0/39) calves. BToV was detected in both diarrheic (14%, 6/43) and non-diarrheic (13.2%, 5/38) dairy calves. In addition, BToV was detected in the intestinal contents of 14.9% (7/47) of naturally deceased dairy calves. A complete genome (28,446 nucleotides) was obtained, which was the second outside Asia and the first in Latin America. In addition, partial S gene sequences were obtained to perform evolutionary analyses. Nucleotide and amino acid substitutions within and between outbreaks/farms were observed, alerting the continuous evolution of the virus. Through Bayesian analysis using BEAST, a recent origin (mid-60s) of BToV, possibly in Asia, was estimated, with two introductions into Uruguay from Asia and Europe in 2004 and 2013, respectively. The estimated evolutionary rate was 1.80 × 10-3 substitutions/site/year. Our findings emphasize the importance of continued surveillance and genetic characterization for the effective management and understanding of BToV's global epidemiology and evolution.


Subject(s)
Cattle Diseases , Feces , Genome, Viral , Phylogeny , Torovirus Infections , Torovirus , Animals , Uruguay/epidemiology , Cattle , Torovirus/genetics , Torovirus/isolation & purification , Torovirus/classification , Feces/virology , Cattle Diseases/virology , Cattle Diseases/epidemiology , Torovirus Infections/veterinary , Torovirus Infections/virology , Torovirus Infections/epidemiology , Diarrhea/virology , Diarrhea/veterinary , Diarrhea/epidemiology , Evolution, Molecular
2.
Viruses ; 15(10)2023 09 27.
Article in English | MEDLINE | ID: mdl-37896784

ABSTRACT

Hepatitis E Virus (HEV) infection is an emergent zoonotic disease of increasing concern in developed regions. HEV genotype 3 (HEV-3) is mainly transmitted through consumption of contaminated food in high-income countries and is classified into at least 13 subtypes (3a-3n), based on p-distance values from complete genomes. In Latin America, HEV epidemiology studies are very scant. Our group has previously detected HEV3 in clinical cases, swine, wild boars, captive white-collared peccaries, and spotted deer from Uruguay. Herein, we aimed to provide novel insights and an updated overview of the molecular epidemiology of zoonotic HEV in Uruguay, including data from wastewater-based surveillance studies. A thorough analysis of HEV whole genomes and partial ORF2 sequences from Uruguayan human and domestic pig strains showed that they formed a separate monophyletic cluster with high nucleotide identity and exhibited p-distance values over the established cut-off (0.093) compared with reference subtypes' sequences. Furthermore, we found an overall prevalence of 10.87% (10/92) in wastewater, where two samples revealed a close relationship with humans, and animal reservoirs/hosts isolates from Uruguay. In conclusion, a single, new HEV-3 subtype currently circulates in different epidemiological settings in Uruguay, and we propose its designation as 3o along with its reference sequence.


Subject(s)
Deer , Hepatitis E virus , Hepatitis E , Swine Diseases , Swine , Animals , Humans , Hepatitis E virus/genetics , Hepatitis E/epidemiology , Hepatitis E/veterinary , Uruguay/epidemiology , Phylogeny , Genotype , Deer/genetics , Sus scrofa/genetics , Environmental Monitoring , RNA, Viral/genetics
3.
Viruses ; 15(3)2023 03 09.
Article in English | MEDLINE | ID: mdl-36992417

ABSTRACT

Bovine Coronavirus (BCoV) is a major pathogen associated with neonatal calf diarrhea. Standard practice dictates that to prevent BCoV diarrhea, dams should be immunized in the last stage of pregnancy to increase BCoV-specific antibody (Ab) titers in serum and colostrum. For the prevention to be effective, calves need to suck maternal colostrum within the first six to twelve hours of life before gut closure to ensure a good level of passive immunity. The high rate of maternal Ab transfer failure resulting from this process posed the need to develop alternative local passive immunity strategies to strengthen the prevention and treatment of BCoV diarrhea. Immunoglobulin Y technology represents a promising tool to address this gap. In this study, 200 laying hens were immunized with BCoV to obtain spray-dried egg powder enriched in specific IgY Abs to BCoV on a large production scale. To ensure batch-to-batch product consistency, a potency assay was statistically validated. With a sample size of 241, the BCoV-specific IgY ELISA showed a sensitivity and specificity of 97.7% and 98.2%, respectively. ELISA IgY Abs to BCoV correlated with virus-neutralizing Ab titers (Pearson correlation, R2 = 0.92, p < 0.001). Most importantly, a pilot efficacy study in newborn calves showed a significant delay and shorter duration of BCoV-associated diarrhea and shedding in IgY-treated colostrum-deprived calves. Calves were treated with milk supplemented with egg powder (final IgY Ab titer to BCoV ELISA = 512; VN = 32) for 14 days as a passive treatment before a challenge with BCoV and were compared to calves fed milk with no supplementation. This is the first study with proof of efficacy of a product based on egg powder manufactured at a scale that successfully prevents BCoV-associated neonatal calf diarrhea.


Subject(s)
Cattle Diseases , Coronavirus, Bovine , Pregnancy , Animals , Cattle , Female , Chickens , Powders , Animals, Newborn , Antibodies, Viral/analysis , Diarrhea/prevention & control , Diarrhea/veterinary , Cattle Diseases/prevention & control
4.
Arch Virol ; 168(4): 123, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36988730

ABSTRACT

Resistance-breaking (RB) isolates of citrus tristeza virus (CTV) can replicate and move systemically in Poncirus trifoliata, a rootstock widely used for management of decline caused by CTV and other purposes. In Uruguay, severe CTV isolates are prevalent, and an RB isolate (designated as RB-UY1) was identified. In order to predict the implications of this genotype circulating in citrus crops grafted on trifoliate rootstocks, the aim of this work was to determine the biological and molecular characteristics of this isolate, the efficiency of its transmission by Toxoptera citricida, and its effects on plant growth performance of P. trifoliata. Our results show that RB-UY1 can be classified as a mild isolate, that it is phylogenetically associated with the RB1 group, and that it is efficiently transmitted by T. citrida. They also suggest that the RB-UY1 isolate should not affect the performance of citrus crops grafted on trifoliate rootstocks, although some growth parameters of P. trifoliata seedlings were affected four years after inoculation.


Subject(s)
Citrus , Closterovirus , Poncirus , Poncirus/genetics , Uruguay , Closterovirus/genetics
5.
J Water Health ; 20(12): 1748-1754, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36573677

ABSTRACT

The aim of this study was to determine the frequency of Human Papillomavirus (HPV) genotypes in wastewater of Salto city, Uruguay, in order to obtain a general overview of the circulating genotypes in their population. HPV was detected in 34% (32/93) of the wastewater samples collected and analyzed during 2020/21 in Salto city, Uruguay. Thirty-three genotypes were observed, of which 16 presented read abundance higher than 1%, including both high-risk (HR) and low-risk (LR) genotypes. HR genotypes 31, 16, 58, 52, 33 and 59 were detected representing 40% (163,220 reads) of the total read abundance, with genotypes 31 (64,365), 16 (39,337) and 58 (36,332) being the most abundant. LR genotypes 72, 6, 11 and 40 were also detected in a high frequency, accounting for 37% (148,359) of the HPV reads. This study highlights the high frequency of HR genotypes of HPV, circulating in the population of Salto city which is a burden in public health mainly due to the devastating impact of cervical cancer in women.


Subject(s)
Human Papillomavirus Viruses , Papillomavirus Infections , Humans , Female , Wastewater , Papillomavirus Infections/epidemiology , Papillomavirus Infections/genetics , Uruguay/epidemiology , Papillomaviridae/genetics , Genotype , Prevalence
6.
Viruses ; 14(9)2022 09 14.
Article in English | MEDLINE | ID: mdl-36146848

ABSTRACT

Bovine polyomavirus-1 (BoPyV-1, Epsilonpolyomavirus bovis) is widespread in cattle and has been detected in commercialized beef at supermarkets in the USA and Germany. BoPyV-1 has been questioned as a probable zoonotic agent with documented increase in seropositivity in people exposed to cattle. However, to date, BoPyV-1 has not been causally associated with pathology or disease in any animal species, including humans. Here we describe and illustrate pathological findings in an aborted bovine fetus naturally infected with BoPyV-1, providing evidence of its pathogenicity and probable abortigenic potential. Our results indicate that: (i) BoPyV-1 can cause severe kidney lesions in cattle, including tubulointerstitial nephritis with cytopathic changes and necrosis in tubular epithelial cells, tubular and interstitial inflammation, and interstitial fibroplasia; (ii) lesions are at least partly attributable to active viral replication in renal tubular epithelial cells, which have abundant intranuclear viral inclusions; (iii) BoPyV-1 large T (LT) antigen, resulting from early viral gene expression, can be detected in infected renal tubular epithelial cells using a monoclonal antibody raised against Simian Virus-40 polyomavirus LT antigen; and (iv) there is productive BoPyV-1 replication and virion assembly in the nuclei of renal tubular epithelial cells, as demonstrated by the ultrastructural observation of abundant arrays of viral particles with typical polyomavirus morphology. Altogether, these lesions resemble the "cytopathic-inflammatory pathology pattern" proposed in the pathogenesis of Human polyomavirus-1-associated nephropathy in immunocompromised people and kidney allograft recipients. Additionally, we sequenced the complete genome of the BoPyV-1 infecting the fetus, which represents the first whole genome of a BoPyV-1 from the Southern Hemisphere. Lastly, the BoPyV-1 strain infecting this fetus was isolated, causing a cytopathic effect in Madin-Darby bovine kidney cells. We conclude that BoPyV-1 is pathogenic to the bovine fetus under natural circumstances. Further insights into the epidemiology, biology, clinical relevance, and zoonotic potential of BoPyV-1 are needed.


Subject(s)
Kidney Transplantation , Nephritis, Interstitial , Polyomavirus Infections , Polyomavirus , Tumor Virus Infections , Animals , Antibodies, Monoclonal , Antigens, Viral, Tumor , Cattle , Fetus/pathology , Humans , Kidney , Kidney Transplantation/adverse effects , Nephritis, Interstitial/complications , Nephritis, Interstitial/pathology , Polyomavirus Infections/complications , Simian virus 40 , Tumor Virus Infections/complications
7.
Front Vet Sci ; 9: 952197, 2022.
Article in English | MEDLINE | ID: mdl-36032290

ABSTRACT

Rotavirus A (RVA) is amongst the most widespread causes of neonatal calf diarrhea. Because subclinical infections are common, the diagnosis of RVA-induced diarrhea cannot rely solely on molecular viral detection. However, RT-qPCR allows for quantification of RVA shedding in feces, which can be correlated with clinical disease. Here, we determine an optimal cutoff of rotaviral load quantified by RT-qPCR to predict RVA causality in diarrheic neonate calves, using RVA antigen-capture ELISA as reference test. Feces from 328 diarrheic (n = 175) and non-diarrheic (n = 153), <30-day-old dairy calves that had been tested by ELISA and tested positive by RT-qPCR were included. Of 82/328 (25.0%) ELISA-positive calves, 53/175 (30.3%) were diarrheic, whereas 124/153 (81.0%) non-diarrheic calves tested negative by ELISA. The median log10 viral load was significantly higher in diarrheic vs. non-diarrheic and ELISA-positive vs. -negative calves, indicating a higher viral load in diarrheic and ELISA-positive calves. A receiver operating characteristic (ROC) analysis was conducted using the viral loads of the 175 diarrheic calves that had tested either positive (n = 53, cases) or negative (n = 122, controls) by ELISA. The optimal log10 viral load cutoff that predicted RVA causality in diarrheic calves was 9.171. A bootstrapping procedure was performed to assess the out-of-bag performance of this cutoff point, resulting in sensitivity = 0.812, specificity = 0.886, area under the curve = 0.922, and positive and negative diagnostic likelihood ratios of 11.184 and 0.142, respectively. The diagnostic accuracy of the cutoff was excellent to outstanding. This information will help in the interpretation of RVA RT-qPCR results in feces of diarrheic calves submitted for laboratory testing.

8.
Rev. argent. microbiol ; 54(2): 41-50, jun. 2022. graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1407179

ABSTRACT

Resumen Describimos un caso de encefalitis asociada a infección por astrovirus bovino neu-rotrópico en una vaca lechera, raza Jersey, del departamento de San José, Uruguay. Esterepresenta el segundo caso reportado de esta condición en el hemisferio sur. La vaca, únicaafectada de un rodeo de 70 bovinos, manifestó signos clínicos neurológicos con curso de 2 días,luego de los que murió espontáneamente. El examen histopatológico reveló meningoencefalitislinfocítica, histiocítica y plasmacítica, con necrosis neuronal, sin cuerpos de inclusión. No sedetectaron en el cerebro otros agentes infecciosos, incluyendo el virus de la rabia (Lyssavirus),alfaherpesvirus bovino-1 y alfaherpesvirus bovino-5 (Varicellovirus), virus de la diarrea viralbovina (Pestivirus), virus del Nilo Occidental (Flavivirus), Listeria monocytogenes, Histophi-lus somni y otras bacterias. Dado que el descubrimiento de astrovirus neurotrópicos en variasespecies de mamíferos, incluidos humanos, es reciente, proponemos que los casos de encefalitis por astrovirus pudieron haber pasado inadvertidos en Sudamérica. Discutimos brevementeel diagnóstico patológico diferencial de encefalitis infecciosas en bovinos.


Abstract We describe a case of neurotropic bovine astrovirus-associated encephalitis in a Jer-sey dairy cow from the department of San José, Uruguay. This represents the second case of thiscondition reported in the Southern Hemisphere. The cow was the only one affected in a herd of70 cows, showing neurological signs with a 2-day clinical course, before dying spontaneously.Histopathological examination revealed lymphocytic, histiocytic, and plasmacytic meningoen-cephalitis with neuronal necrosis, without detectable inclusion bodies. Other infectious agents,including Rabies virus (Lyssavirus), Bovine alphaherpesvirus-1 and Bovine alphaherpesvirus-5(Varicellovirus), Bovine viral diarrhea virus (Pestivirus), West Nile virus (Flavivirus), Listeriamonocytogenes, Histophilus somni and other bacteria, were not detected in the brain. We pro-pose that given the recent discovery of neurotropic astroviruses in various mammalian species,including humans, cases of astrovirus encephalitis may have gone undetected in South America.We briefly discuss the differential pathologic diagnosis of infectious bovine encephalitis.

9.
Transbound Emerg Dis ; 69(4): 1872-1879, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34038622

ABSTRACT

Noroviruses belong to a genetically diverse group of viruses infecting a wide range of mammalian host species, and those detected in cattle and sheep are classified within genogroup III (GIII). The current classification of norovirus in genogroups and genotypes is based on phylogenetic clustering and average distances within and between these phylogenetic clusters; however, the classification studies have been focused mainly on human norovirus, being GIII norovirus relegated. Due to the increasing number of studies on GIII norovirus, the need of an updated and extensive classification is evident. The aim of this study was to update the classification of norovirus within GIII, to describe the emergence of a circulating recombinant strain, and to reconstruct the evolutionary history of this genogroup. Two P-types (GIII.P1-2) and four genotypes (GIII.1-4) were described. For the genogroup GIII, the evolutionary rate estimated was 2.78E-3 s/s/y (95%HPD, 1.79E-3 s/s/y-3.78E-3 s/s/y), and the tMRCA was estimated around 1500 (95%HPD, 1247-1688). Despite the long history of this genogroup, the genotypes detected at present emerged in the last 100 years. Interestingly, most of the recombinant GIII.2P[1] strains detected worldwide were originated from a single recombination event and this recombinant strain was later dispersed through the world. Finally, our results indicate that a scenario of genotypes replacement through the time is highly probable.


Subject(s)
Caliciviridae Infections , Gastroenteritis , Norovirus , Sheep Diseases , Animals , Caliciviridae Infections/epidemiology , Caliciviridae Infections/veterinary , Cattle , Gastroenteritis/veterinary , Genotype , Humans , Mammals , Norovirus/genetics , Phylogeny , Sheep
10.
Rev Argent Microbiol ; 54(2): 100-105, 2022.
Article in Spanish | MEDLINE | ID: mdl-34148730

ABSTRACT

We describe a case of neurotropic bovine astrovirus-associated encephalitis in a Jersey dairy cow from the department of San José, Uruguay. This represents the second case of this condition reported in the Southern Hemisphere. The cow was the only one affected in a herd of 70 cows, showing neurological signs with a 2-day clinical course, before dying spontaneously. Histopathological examination revealed lymphocytic, histiocytic, and plasmacytic meningoencephalitis with neuronal necrosis, without detectable inclusion bodies. Other infectious agents, including Rabies virus(Lyssavirus), Bovine alphaherpesvirus-1 and Bovine alphaherpesvirus-5(Varicellovirus), Bovine viral diarrhea virus(Pestivirus), West Nile virus(Flavivirus), Listeria monocytogenes, Histophilus somni and other bacteria, were not detected in the brain. We propose that given the recent discovery of neurotropic astroviruses in various mammalian species, including humans, cases of astrovirus encephalitis may have gone undetected in South America. We briefly discuss the differential pathologic diagnosis of infectious bovine encephalitis.


Subject(s)
Astroviridae Infections , Astroviridae , Cattle Diseases , Encephalitis , Kobuvirus , Animals , Astroviridae Infections/diagnosis , Astroviridae Infections/epidemiology , Astroviridae Infections/veterinary , Cattle , Cattle Diseases/diagnosis , Cattle Diseases/epidemiology , Encephalitis/diagnosis , Encephalitis/veterinary , Female , Mammals
11.
Viruses ; 13(9)2021 09 10.
Article in English | MEDLINE | ID: mdl-34578382

ABSTRACT

Uruguay controlled the viral dissemination during the first nine months of the SARS-CoV-2 pandemic. Unfortunately, towards the end of 2020, the number of daily new cases exponentially increased. Herein, we analyzed the country-wide genetic diversity of SARS-CoV-2 between November 2020 and April 2021. We identified that the most prevalent viral variant during the first epidemic wave in Uruguay (December 2020-February 2021) was a B.1.1.28 sublineage carrying Spike mutations Q675H + Q677H, now designated as P.6, followed by lineages P.2 and P.7. P.6 probably arose around November 2020, in Montevideo, Uruguay's capital department, and rapidly spread to other departments, with evidence of further local transmission clusters; it also spread sporadically to the USA and Spain. The more efficient dissemination of lineage P.6 with respect to P.2 and P.7 and the presence of mutations (Q675H and Q677H) in the proximity of the key cleavage site at the S1/S2 boundary suggest that P.6 may be more transmissible than other lineages co-circulating in Uruguay. Although P.6 was replaced by the variant of concern (VOC) P.1 as the predominant lineage in Uruguay since April 2021, the monitoring of the concurrent emergence of Q675H + Q677H in VOCs should be of worldwide interest.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/transmission , Genome, Viral , Humans , Mutation , Phylogeography , Retrospective Studies , SARS-CoV-2/pathogenicity , Uruguay
12.
J Virol Methods ; 297: 114249, 2021 11.
Article in English | MEDLINE | ID: mdl-34339765

ABSTRACT

In the pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) many strategies have been performed in order to control viral spread in the population and known the real-time situation about the number of infected persons. In this sense, Wastewater Based Epidemiology (WBE) has been applied as an excellent tool to evaluate the virus circulation in a population. In order to obtain reliable results, three low-cost viral concentration methods were evaluated in this study, polyethylene glycol (PEG) precipitation, skimmed milk flocculation (SM) and Aluminum polychloride flocculation, for Pseudomonas aeruginosa bacteriophage PP7 as a surrogate for non-enveloped viruses and Bovine Coronavirus (BCoV) as a surrogate for enveloped virus, with emphasis for SARS- CoV-2. Our results suggest that PEG precipitation for viral concentration, for both enveloped and non-enveloped virus from wastewater is an appropriate approach since it was more sensitive compared to SM flocculation and Aluminum polychloride flocculation. This methodology can be used for WBE studies in order to follow the epidemiology of the SARS-CoV-2 pandemic, mainly in developing countries where the economic resources are frequently limited.


Subject(s)
COVID-19 , Viruses , Animals , Cattle , Humans , Pandemics , SARS-CoV-2 , Wastewater
13.
PLoS One ; 16(8): e0255846, 2021.
Article in English | MEDLINE | ID: mdl-34383835

ABSTRACT

Human enteroviruses (EVs) comprise more than 100 types of coxsackievirus, echovirus, poliovirus and numbered enteroviruses, which are mainly transmitted by the faecal-oral route leading to diverse diseases such as aseptic meningitis, encephalitis, and acute flaccid paralysis, among others. Since enteroviruses are excreted in faeces, wastewater-based epidemiology approaches are useful to describe EV diversity in a community. In Uruguay, knowledge about enteroviruses is extremely limited. This study assessed the diversity of enteroviruses through Illumina next-generation sequencing of VP1-amplicons obtained by RT-PCR directly applied to viral concentrates of 84 wastewater samples collected in Uruguay during 2011-2012 and 2017-2018. Fifty out of the 84 samples were positive for enteroviruses. There were detected 27 different types belonging to Enterovirus A species (CVA2-A6, A10, A16, EV-A71, A90), Enterovirus B species (CVA9, B1-B5, E1, E6, E11, E14, E21, E30) and Enterovirus C species (CVA1, A13, A19, A22, A24, EV-C99). Enterovirus A71 (EV-A71) and echovirus 30 (E30) strains were studied more in depth through phylogenetic analysis, together with some strains previously detected by us in Argentina. Results unveiled that EV-A71 sub-genogroup C2 circulates in both countries at least since 2011-2012, and that the C1-like emerging variant recently entered in Argentina. We also confirmed the circulation of echovirus 30 genotypes E and F in Argentina, and reported the detection of genotype E in Uruguay. To the best of our knowledge this is the first report of the EV-A71 C1-like emerging variant in South-America, and the first report of EV-A71 and E30 in Uruguay.


Subject(s)
Enterovirus A, Human/genetics , Enterovirus B, Human/genetics , Genetic Linkage/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Enterovirus A, Human/classification , Enterovirus A, Human/isolation & purification , Enterovirus B, Human/classification , Enterovirus B, Human/isolation & purification , Enterovirus C, Human/classification , Enterovirus C, Human/genetics , Enterovirus C, Human/isolation & purification , Genotype , Humans , Phylogeny , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , Seasons , South America , Uruguay , Wastewater/virology
14.
Emerg Infect Dis ; 27(11): 2957-2960, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34437831

ABSTRACT

We developed a genomic surveillance program for real-time monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) in Uruguay. We report on a PCR method for SARS-CoV-2 VOCs, the surveillance workflow, and multiple independent introductions and community transmission of the SARS-CoV-2 P.1 VOC in Uruguay.


Subject(s)
COVID-19 , SARS-CoV-2 , Genomics , Humans , Uruguay/epidemiology
15.
Front Microbiol ; 12: 653986, 2021.
Article in English | MEDLINE | ID: mdl-34122369

ABSTRACT

Uruguay is one of the few countries in the Americas that successfully contained the coronavirus disease 19 (COVID-19) epidemic during the first half of 2020. Nevertheless, the intensive human mobility across the dry border with Brazil is a major challenge for public health authorities. We aimed to investigate the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains detected in Uruguayan localities bordering Brazil as well as to measure the viral flux across this ∼1,100 km uninterrupted dry frontier. Using complete SARS-CoV-2 genomes from the Uruguayan-Brazilian bordering region and phylogeographic analyses, we inferred the virus dissemination frequency between Brazil and Uruguay and characterized local outbreak dynamics during the first months (May-July) of the pandemic. Phylogenetic analyses revealed multiple introductions of SARS-CoV-2 Brazilian lineages B.1.1.28 and B.1.1.33 into Uruguayan localities at the bordering region. The most probable sources of viral strains introduced to Uruguay were the Southeast Brazilian region and the state of Rio Grande do Sul. Some of the viral strains introduced in Uruguayan border localities between early May and mid-July were able to locally spread and originated the first outbreaks detected outside the metropolitan region. The viral lineages responsible for Uruguayan urban outbreaks were defined by a set of between four and 11 mutations (synonymous and non-synonymous) with respect to the ancestral B.1.1.28 and B.1.1.33 viruses that arose in Brazil, supporting the notion of a rapid genetic differentiation between SARS-CoV-2 subpopulations spreading in South America. Although Uruguayan borders have remained essentially closed to non-Uruguayan citizens, the inevitable flow of people across the dry border with Brazil allowed the repeated entry of the virus into Uruguay and the subsequent emergence of local outbreaks in Uruguayan border localities. Implementation of coordinated bi-national surveillance systems is crucial to achieve an efficient control of the SARS-CoV-2 spread across this kind of highly permeable borderland regions around the world.

16.
Braz J Microbiol ; 52(2): 977-988, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33575990

ABSTRACT

Neonatal calf diarrhea (NCD) and mortality cause significant losses to the dairy industry. The preweaning dairy calf mortality risk in Uruguay is high (15.2%); however, causes for these losses are largely unknown. This study aimed to assess whether various pathogens were associated with NCD and death in Uruguayan dairy calves and whether these infections, diarrhea, or deaths were associated with the failure of transfer of passive immunity (FTPI). Contemporary diarrheic (n = 264,) and non-diarrheic (n = 271) 1- to 30-day-old calves from 27 farms were sampled. Feces were analyzed by antigen-capture ELISA for Cryptosporidium spp., rotavirus, bovine coronavirus, and Escherichia coli F5+, RT-PCR for bovine astrovirus (BoAstV), and bacterial cultures for Salmonella enterica. Blood/serum was analyzed by RT-PCR or antigen-capture ELISA for bovine viral diarrhea virus (BVDV). Serum of ≤ 8-day-old calves (n = 95) was assessed by refractometry to determine the concention of serum total proteins (STP) as an indicator of FTPI. Whether the sampled calves died before weaning was recorded. At least one pathogen was detected in 65.4% of the calves, and this percentage was significantly higher in diarrheic (83.7%) versus non-diarrheic (47.6%) calves. Unlike the other pathogens, Cryptosporidium spp. and rotavirus were associated with NCD. Diarrheic calves, calves infected with any of the pathogens, and calves infected with rotavirus had significantly lower concentrations of STP. Diarrheic calves had higher chances of dying before weaning than non-diarrheic calves. Diarrheic calves infected with S. enterica were at increased risk of mortality. Controlling NCD, salmonellosis, cryptosporidiosis, and rotavirus infections, and improving colostrum management practices would help to reduce calf morbi-mortality in dairy farms in Uruguay.


Subject(s)
Cattle Diseases/etiology , Cattle Diseases/mortality , Diarrhea/veterinary , Animals , Animals, Newborn , Astroviridae/isolation & purification , Case-Control Studies , Cattle , Cryptosporidium/isolation & purification , Dairying/methods , Diarrhea/etiology , Diarrhea/mortality , Diarrhea Viruses, Bovine Viral/isolation & purification , Enzyme-Linked Immunosorbent Assay/veterinary , Escherichia coli/isolation & purification , Feces/microbiology , Feces/parasitology , Feces/virology , Female , Immunization, Passive/veterinary , Real-Time Polymerase Chain Reaction/veterinary , Rotavirus/isolation & purification , Salmonella enterica/isolation & purification , Surveys and Questionnaires , Syndrome , Uruguay/epidemiology
17.
Viruses ; 13(1)2021 Jan 17.
Article in English | MEDLINE | ID: mdl-33477302

ABSTRACT

The knowledge about circulation of Human Enteroviruses (EVs) obtained through medical diagnosis in Argentina is scarce. Wastewater samples monthly collected in Córdoba, Argentina during 2011-2012, and then in 2017-2018 were retrospectively studied to assess the diversity of EVs in the community. Partial VP1 gene was amplified by PCR from wastewater concentrates, and amplicons were subject of next-generation sequencing and genetic analyses. There were 41 EVs detected, from which ~50% had not been previously reported in Argentina. Most of the characterized EVs (60%) were detected at both sampling periods, with similar values of intratype nucleotide diversity. Exceptions were enterovirus A71, coxsackievirus B4, echovirus 14, and echovirus 30, which diversified in 2017-2018. There was a predominance of types from EV-C in 2017-2018, evidencing a common circulation of these types throughout the year in the community. Interestingly, high genetic similarity was evidenced among environmental strains of echovirus 30 circulating in 2011-2012 and co-temporal isolates obtained from patients suffering aseptic meningitis in different locations of Argentina. This study provides an updated insight about EVs circulating in an important region of South America, and suggests a valuable role of wastewater-based epidemiology in predicting outbreaks before the onset of cases in the community.


Subject(s)
Enterovirus Infections/epidemiology , Enterovirus Infections/virology , Enterovirus/genetics , Environmental Microbiology , Environmental Monitoring , Genetic Variation , Argentina/epidemiology , Computational Biology/methods , Enterovirus/classification , Enterovirus/isolation & purification , High-Throughput Nucleotide Sequencing , Humans , Phylogeny , Public Health Surveillance , Viral Load , Wastewater/microbiology , Wastewater/virology
18.
Infect Genet Evol ; 86: 104613, 2020 12.
Article in English | MEDLINE | ID: mdl-33157299

ABSTRACT

Uruguay is a leading exporter of bovine meat and dairy products, and cattle production is one of the principal economic backbones in this country. A main clinical problem faced by livestock farmers is neonatal calf diarrhea (NCD); however, causes of NCD have not been extensively studied in Uruguay. Bovine norovirus (BoNoV) has been proposed as one of the possible etiologies of NCD as experimentally infected calves developed diarrhea and enteropathy, although limited information is available from field surveys. The aims of this study were to determine the frequency of infection, to investigate possible risk factors, and to determine the molecular diversity of BoNoV in Uruguay. A total of 761 samples of feces or intestinal contents from dairy and beef calves were analyzed through RT-qPCR. The overall frequency of detection of BoNoV was 66.1% with higher frequency in dairy (70.5%) than beef (15.9%) calves (p < 0.01). BoNoV was detected similarly in diarrheic (78.8%) and non-diarrheic (76.2%) dairy calves (p = 0.50). Calves ≤2 weeks of age (84%) were infected more often than older (62.7%) calves (p < 0.01). Phylogenetic analysis confirmed the presence of GIII.1 and GIII.2 genotypes. In addition, we reported the circulation of recombinant strains and the detection of a strain with the recently described novel VP1 genotype. This study represents the first report describing the circulation, the associated risk factors, and the molecular diversity of BoNoV in Uruguay.


Subject(s)
Caliciviridae Infections/veterinary , Cattle Diseases/epidemiology , Cattle Diseases/virology , Genetic Variation , Norovirus/classification , Norovirus/genetics , Animals , Cattle , Diarrhea/veterinary , Disease Susceptibility , Genotype , Phylogeny , Risk Factors , Uruguay/epidemiology
19.
Pathogens ; 9(7)2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32674420

ABSTRACT

Uruguay is one of the main exporters of beef and dairy products, and cattle production is one of the main economic sectors in this country. Rotavirus A (RVA) is the main pathogen associated with neonatal calf diarrhea (NCD), a syndrome that leads to significant economic losses to the livestock industry. The aims of this study are to determine the frequency of RVA infections, and to analyze the genetic diversity of RVA strains in calves in Uruguay. A total of 833 samples from dairy and beef calves were analyzed through RT-qPCR and sequencing. RVA was detected in 57.0% of the samples. The frequency of detection was significantly higher in dairy (59.5%) than beef (28.4%) calves (p < 0.001), while it did not differ significantly among calves born in herds that were vaccinated (64.0%) or not vaccinated (66.7%) against NCD. The frequency of RVA detection and the viral load were significantly higher in samples from diarrheic (72.1%, 7.99 log10 genome copies/mL of feces) than non-diarrheic (59.9%, 7.35 log10 genome copies/mL of feces) calves (p < 0.005 and p = 0.007, respectively). The observed G-types (VP7) were G6 (77.6%), G10 (20.7%), and G24 (1.7%), while the P-types were P[5] (28.4%), P[11] (70.7%), and P[33] (0.9%). The G-type and P-type combinations were G6P[11] (40.4%), G6P[5] (38.6%), G10P[11] (19.3%), and the uncommon genotype G24P[33] (1.8%). VP6 and NSP1-5 genotyping were performed to better characterize some strains. The phylogenetic analyses suggested interspecies transmission, including transmission between animals and humans.

20.
J Med Virol ; 92(10): 2165-2172, 2020 10.
Article in English | MEDLINE | ID: mdl-32410229

ABSTRACT

On 30th January 2020, an outbreak of atypical pneumonia caused by a novel betacoronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared a public health emergency of international concern by the World Health Organization. For this reason, a detailed evolutionary analysis of SARS-CoV-2 strains currently circulating in different geographic regions of the world was performed. A compositional analysis as well as a Bayesian coalescent analysis of complete genome sequences of SARS-CoV-2 strains recently isolated in Europe, North America, South America, and Asia was performed. The results of these studies revealed a diversification of SARS-CoV-2 strains in three different genetic clades. Co-circulation of different clades in different countries, as well as different genetic lineages within different clades were observed. The time of the most recent common ancestor was established to be around 1st November 2019. A mean rate of evolution of 6.57 × 10-4 substitutions per site per year was found. A significant migration rate per genetic lineage per year from Europe to South America was also observed. The results of these studies revealed an increasing diversification of SARS-CoV-2 strains. High evolutionary rates and fast population growth characterizes the population dynamics of SARS-CoV-2 strains.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Genome, Viral , Pandemics , Polymorphism, Genetic , SARS-CoV-2/genetics , Asia/epidemiology , Bayes Theorem , COVID-19/diagnosis , COVID-19/virology , Europe/epidemiology , Evolution, Molecular , Genotype , Humans , Molecular Epidemiology , North America/epidemiology , Phylogeny , SARS-CoV-2/classification , South America/epidemiology , Travel , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...