Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
BMC Ecol Evol ; 23(1): 35, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468829

ABSTRACT

BACKGROUND: The unicellular ancestors of modern-day multicellular organisms were remarkably complex. They had an extensive set of regulatory and signalling genes, an intricate life cycle and could change their behaviour in response to environmental changes. At the transition to multicellularity, some of these behaviours were co-opted to organise the development of the nascent multicellular organism. Here, we focus on the transition to multicellularity before the evolution of stable cell differentiation, to reveal how the emergence of clusters affects the evolution of cell behaviour. RESULTS: We construct a computational model of a population of cells that can evolve the regulation of their behavioural state - either division or migration - and study both a unicellular and a multicellular context. Cells compete for reproduction and for resources to survive in a seasonally changing environment. We find that the evolution of multicellularity strongly determines the co-evolution of cell behaviour, by altering the competition dynamics between cells. When adhesion cannot evolve, cells compete for survival by rapidly migrating towards resources before dividing. When adhesion evolves, emergent collective migration alleviates the pressure on individual cells to reach resources. This allows individual cells to maximise their own replication. Migrating adhesive clusters display striking patterns of spatio-temporal cell state changes that visually resemble animal development. CONCLUSIONS: Our model demonstrates how emergent selection pressures at the onset of multicellularity can drive the evolution of cellular behaviour to give rise to developmental patterns.


Subject(s)
Biological Evolution , Reproduction , Animals , Cell Differentiation
2.
Mol Syst Biol ; 19(3): e11353, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36727665

ABSTRACT

Division of labor can evolve when social groups benefit from the functional specialization of its members. Recently, a novel means of coordinating the division of labor was found in the antibiotic-producing bacterium Streptomyces coelicolor, where specialized cells are generated through large-scale genomic re-organization. We investigate how the evolution of a genome architecture enables such mutation-driven division of labor, using a multiscale computational model of bacterial evolution. In this model, bacterial behavior-antibiotic production or replication-is determined by the structure and composition of their genome, which encodes antibiotics, growth-promoting genes, and fragile genomic loci that can induce chromosomal deletions. We find that a genomic organization evolves, which partitions growth-promoting genes and antibiotic-coding genes into distinct parts of the genome, separated by fragile genomic loci. Mutations caused by these fragile sites mostly delete growth-promoting genes, generating sterile, and antibiotic-producing mutants from weakly-producing progenitors, in agreement with experimental observations. This division of labor enhances the competition between colonies by promoting antibiotic diversity. These results show that genomic organization can co-evolve with genomic instabilities to enable reproductive division of labor.


Subject(s)
Genome , Genomics , Mutation , Anti-Bacterial Agents
3.
Evol Appl ; 16(1): 3-21, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36699126

ABSTRACT

Evolution has traditionally been a historical and descriptive science, and predicting future evolutionary processes has long been considered impossible. However, evolutionary predictions are increasingly being developed and used in medicine, agriculture, biotechnology and conservation biology. Evolutionary predictions may be used for different purposes, such as to prepare for the future, to try and change the course of evolution or to determine how well we understand evolutionary processes. Similarly, the exact aspect of the evolved population that we want to predict may also differ. For example, we could try to predict which genotype will dominate, the fitness of the population or the extinction probability of a population. In addition, there are many uses of evolutionary predictions that may not always be recognized as such. The main goal of this review is to increase awareness of methods and data in different research fields by showing the breadth of situations in which evolutionary predictions are made. We describe how diverse evolutionary predictions share a common structure described by the predictive scope, time scale and precision. Then, by using examples ranging from SARS-CoV2 and influenza to CRISPR-based gene drives and sustainable product formation in biotechnology, we discuss the methods for predicting evolution, the factors that affect predictability and how predictions can be used to prevent evolution in undesirable directions or to promote beneficial evolution (i.e. evolutionary control). We hope that this review will stimulate collaboration between fields by establishing a common language for evolutionary predictions.

4.
Essays Biochem ; 66(6): 727-735, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36468669

ABSTRACT

Evolution has been an inventive process since its inception, about 4 billion years ago. It has generated an astounding diversity of novel mechanisms and structures for adaptation to the environment, for competition and cooperation, and for organisation of the internal and external dynamics of the organism. How does this novelty come about? Evolution builds with the tools available, and on top of what it has already built - therefore, much novelty consists in repurposing old functions in a different context. In the process, the tools themselves evolve, allowing yet more novelty to arise. Despite evolutionary novelty being the most striking observable of evolution, it is not accounted for in classical evolutionary theory. Nevertheless, mathematical and computational models that illustrate mechanisms of evolutionary innovation have been developed. In the present review, we present and compare several examples of computational evo-devo models that capture two aspects of novelty: 'between-level novelty' and 'constructive novelty.' Novelty can evolve between predefined levels of organisation to dynamically transcode biological information across these levels - as occurs during development. Constructive novelty instead generates a level of biological organisation by exploiting the lower level as an informational scaffold to open a new space of possibilities - an example being the evolution of multicellularity. We propose that the field of computational evo-devo is well-poised to reveal many more exciting mechanisms for the evolution of novelty. A broader theory of evolutionary novelty may well be attainable in the near future.

5.
Elife ; 102021 08 10.
Article in English | MEDLINE | ID: mdl-34372968

ABSTRACT

Organ laterality refers to the left-right asymmetry in disposition and conformation of internal organs and is established during embryogenesis. The heart is the first organ to display visible left-right asymmetries through its left-sided positioning and rightward looping. Here, we present a new zebrafish loss-of-function allele for tbx5a, which displays defective rightward cardiac looping morphogenesis. By mapping individual cardiomyocyte behavior during cardiac looping, we establish that ventricular and atrial cardiomyocytes rearrange in distinct directions. As a consequence, the cardiac chambers twist around the atrioventricular canal resulting in torsion of the heart tube, which is compromised in tbx5a mutants. Pharmacological treatment and ex vivo culture establishes that the cardiac twisting depends on intrinsic mechanisms and is independent from cardiac growth. Furthermore, genetic experiments indicate that looping requires proper tissue patterning. We conclude that cardiac looping involves twisting of the chambers around the atrioventricular canal, which requires correct tissue patterning by Tbx5a.


Subject(s)
Heart/embryology , Organogenesis/genetics , Transcription Factors/genetics , Zebrafish Proteins/genetics , Zebrafish/embryology , Animals , Body Patterning , Embryo, Nonmammalian/embryology , Transcription Factors/metabolism , Zebrafish Proteins/metabolism
6.
Elife ; 92020 10 16.
Article in English | MEDLINE | ID: mdl-33064078

ABSTRACT

At the origin of multicellularity, cells may have evolved aggregation in response to predation, for functional specialisation or to allow large-scale integration of environmental cues. These group-level properties emerged from the interactions between cells in a group, and determined the selection pressures experienced by these cells. We investigate the evolution of multicellularity with an evolutionary model where cells search for resources by chemotaxis in a shallow, noisy gradient. Cells can evolve their adhesion to others in a periodically changing environment, where a cell's fitness solely depends on its distance from the gradient source. We show that multicellular aggregates evolve because they perform chemotaxis more efficiently than single cells. Only when the environment changes too frequently, a unicellular state evolves which relies on cell dispersal. Both strategies prevent the invasion of the other through interference competition, creating evolutionary bi-stability. Therefore, collective behaviour can be an emergent selective driver for undifferentiated multicellularity.


All multicellular organisms, from fungi to humans, started out life as single cell organisms. These cells were able to survive on their own for billions of years before aggregating together to form multicellular groups. Although there are trade-offs for being in a group, such as sharing resources, there are also benefits: in a group, single cells can divide tasks amongst themselves to become more efficient, and can develop sophisticated mechanisms to protect each other from harm. But what compelled single cells to make the first move and aggregate into a group? One way to answer this question is to study the behaviour of slime moulds. These organisms exist as single cells but form colonies when their resources run low. Researchers have observed that slime mould colonies can navigate their environment much better than single cells alone. This property suggests that the benefits of moving together as a collective could be the driving factor propelling single cells to form groups. To test this theory, Colizzi et al. developed a computer model to examine how well groups of cells and lone individuals responded to nearby chemical cues. Unlike previous simulations, the model created by Colizzi et al. did not specify that being in a group was necessarily more favourable than existing as a single cell. Instead, it was left for evolution to decide which was the best option in response to the changing environmental conditions of the simulation. The mathematical model showed that groups of cells were generally better at sensing and moving towards a resource than single cells acting alone. Single cells moved at the same speed as groups, but they often sensed their environment poorly and got disorientated. Only when the environment changed frequently, did cells revert back to the single life. This was because it was no longer beneficial to band together as a group, as the cells were unable to sense the environmental cues fast enough to communicate to each other and coordinate a response. This work provides insights into what drove the early evolution of complex life and explains why, under certain conditions, single cells evolved to form colonies. Additionally, if this model were to be adopted by cancer biologists, it could help researchers better understand how cancer cells form groups to move and spread around the body.


Subject(s)
Biological Evolution , Cell Communication , Cell Adhesion , Cell Communication/physiology , Chemotaxis/physiology , Models, Biological
7.
Genome Biol Evol ; 11(11): 3207-3217, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31651950

ABSTRACT

Clashes between transcription and replication complexes can cause point mutations and chromosome rearrangements on heavily transcribed genes. In eukaryotic ribosomal RNA genes, the system that prevents transcription-replication conflicts also causes frequent copy number variation. Such fast mutational dynamics do not alter growth rates in yeast and are thus selectively near neutral. It was recently found that yeast regulates these mutations by means of a signaling cascade that depends on the availability of nutrients. Here, we investigate the long-term evolutionary effect of the mutational dynamics observed in yeast. We developed an in silico model of single-cell organisms whose genomes mutate more frequently when transcriptional load is larger. We show that mutations induced by high transcriptional load are beneficial when biased toward gene duplications and deletions: they decrease mutational load even though they increase the overall mutation rates. In contrast, genome stability is compromised when mutations are not biased toward gene duplications and deletions, even when mutations occur much less frequently. Taken together, our results show that the mutational dynamics observed in yeast are beneficial for the long-term stability of the genome and pave the way for a theory of evolution where genetic operators are themselves cause and outcome of the evolutionary dynamics.


Subject(s)
DNA, Ribosomal/genetics , Evolution, Molecular , Mutation Rate , Saccharomyces cerevisiae/genetics , Transcription, Genetic/genetics , Computer Simulation , DNA Copy Number Variations , Gene Duplication , Genome , Models, Genetic , Mutagenesis/genetics , Sequence Deletion
8.
Life (Basel) ; 7(4)2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29099079

ABSTRACT

Molecules that replicate in trans are vulnerable to evolutionary extinction because they decrease the catalysis of replication to become more available as a template for replication. This problem can be alleviated with higher-level selection that clusters molecules of the same phenotype, favouring those groups that contain more catalysis. Here, we study a simple replicator model with implicit higher-level selection through space. We ask whether the functionality of such system can be enhanced when molecules reproduce through complementary replication, representing RNA-like replicators. For high diffusion, symmetry breaking between complementary strands occurs: one strand becomes a specialised catalyst and the other a specialised template. In ensemble, such replicators can modulate their catalytic activity depending on their environment, thereby mitigating the conflict between levels of selection. In addition, these replicators are more evolvable, facilitating survival in extreme conditions (i.e., for higher diffusion rates). Our model highlights that evolution with implicit higher-level selection-i.e., as a result of local interactions and spatial patterning-is very flexible. For different diffusion rates, different solutions to the selective conflict arise. Our results support an RNA World by showing that complementary replicators may have various ways to evolve more complexity.

9.
PLoS Comput Biol ; 12(4): e1004902, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27120344

ABSTRACT

In a prebiotic RNA world, parasitic behaviour may be favoured because template dependent replication happens in trans, thus being altruistic. Spatially extended systems are known to reduce harmful effects of parasites. Here we present a spatial system to show that evolution of replication is (indirectly) enhanced by strong parasites, and we characterise the phase transition that leads to this mode of evolution. Building on the insights of this analysis, we identify two scenarios, namely periodic disruptions and longer replication time-span, in which speciation occurs and an evolved parasite-like lineage enables the evolutionary increase of replication rates in replicators. Finally, we show that parasites co-evolving with replicators are selected to become weaker, i.e. worse templates for replication when the duration of replication is increased. We conclude that parasites may not be considered a problem for evolution in a prebiotic system, but a degree of freedom that can be exploited by evolution to enhance the evolvability of replicators, by means of emergent levels of selection.


Subject(s)
Evolution, Molecular , Models, Biological , Parasites/metabolism , RNA/biosynthesis , Animals , Computational Biology , Genetic Speciation , Origin of Life , Parasites/genetics , RNA/chemistry , RNA/genetics
10.
BMC Evol Biol ; 16: 31, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26832152

ABSTRACT

BACKGROUND: Cooperation is ubiquitous in biological systems, yet its evolution is a long lasting evolutionary problem. A general and intuitive result from theoretical models of cooperative behaviour is that cooperation decreases when its costs are higher, because selfish individuals gain selective advantage. RESULTS: Contrary to this intuition, we show that cooperation can increase with higher costs. We analyse a minimal model where individuals live on a lattice and evolve the degree of cooperation. We find that a feedback establishes between the evolutionary dynamics of public good production and the spatial self-organisation of the population. The evolutionary dynamics lead to the speciation of a cooperative and a selfish lineage. The ensuing spatial self-organisation automatically diversifies the selection pressure on the two lineages. This enables selfish individuals to successfully invade cooperators at the expenses of their autonomous replication, and cooperators to increase public good production while expanding in the empty space left behind by cheaters. We show that this emergent feedback leads to higher degrees of cooperation when costs are higher. CONCLUSIONS: An emergent feedback between evolution and self-organisation leads to high degrees of cooperation at high costs, under simple and general conditions. We propose this as a general explanation for the evolution of cooperative behaviours under seemingly prohibitive conditions.


Subject(s)
Biological Evolution , Cooperative Behavior , Animals , Humans , Population Dynamics
11.
Genome Biol Evol ; 6(8): 1990-2007, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-25056399

ABSTRACT

According to quasispecies theory, high mutation rates limit the amount of information genomes can store (Eigen's Paradox), whereas genomes with higher degrees of neutrality may be selected even at the expenses of higher replication rates (the "survival of the flattest" effect). Introducing a complex genotype to phenotype map, such as RNA folding, epitomizes such effect because of the existence of neutral networks and their exploitation by evolution, affecting both population structure and genome composition. We reexamine these classical results in the light of an RNA-based system that can evolve its own ecology. Contrary to expectations, we find that quasispecies evolving at high mutation rates are steep and characterized by one master sequence. Importantly, the analysis of the system and the characterization of the evolved quasispecies reveal the emergence of functionalities as phenotypes of nonreplicating genotypes, whose presence is crucial for the overall viability and stability of the system. In other words, the master sequence codes for the information of the entire ecosystem, whereas the decoding happens, stochastically, through mutations. We show that this solution quickly outcompetes strategies based on genomes with a high degree of neutrality. In conclusion, individually coded but ecosystem-based diversity evolves and persists indefinitely close to the Information Threshold.


Subject(s)
Computer Simulation , Evolution, Molecular , Models, Genetic , RNA/genetics , Animals , Base Sequence , Ecosystem , Genome , Genotype , Humans , Molecular Sequence Data , Mutation Rate , Phenotype , RNA/chemistry , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...