Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Allergy ; 78(8): 2121-2147, 2023 08.
Article in English | MEDLINE | ID: mdl-36961370

ABSTRACT

Limited number of studies have focused on the impact of pollen exposure on asthma. As a part of the EAACI Guidelines on Environment Science, this first systematic review on the relationship of pollen exposure to asthma exacerbations aimed to bridge this knowledge gap in view of implementing recommendations of prevention. We searched electronic iPubMed, Embase, and Web of Science databases using a set of MeSH terms and related synonyms and identified 73 eligible studies that were included for systemic review. When possible, meta-analyses were conducted. Overall meta-analysis suggests that outdoor pollen exposure may have an effect on asthma exacerbation, but caution is needed due to the low number of studies and their heterogeneity. The strongest associations were found between asthma attacks, asthma-related ED admissions or hospitalizations, and an increase in grass pollen concentration in the previous 2-day overall in children aged less than 18 years of age. Tree pollen may increase asthma-related ED visits or admissions lagged up to 7-day overall in individuals younger than 18 years. Rare data show that among subjects under 18 years of age, an exposure to grass pollen lagged up to 3 days may lower lung function. Further research considering effect modifiers of pollen sensitization, hay fever, asthma, air pollution, green spaces, and pre-existing medications is urgently warranted to better evaluate the impacts of pollen on asthma exacerbation. Preventive measures in relation to pollen exposure should be integrated in asthma control as pollen increase continues due to climate change.


Subject(s)
Air Pollution , Asthma , Child , Humans , Adolescent , Infant, Newborn , Allergens/analysis , Pollen , Asthma/epidemiology , Asthma/etiology , Risk Factors
2.
Anal Bioanal Chem ; 377(3): 578-86, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12879196

ABSTRACT

Cell attachment and spreading on solid surfaces was investigated with a home-made quartz crystal microbalance (QCM), which measures the frequency, the transient decay time constant and the maximal oscillation amplitude. Initial interactions of the adsorbing cells with the QCM mainly induced a decrease of the frequency, coincident with mass adsorption. After about 80 min, the frequency increased continuously and after several hours exceeded the initial frequency measured before cell adsorption. Phase contrast and fluorescence microscopy indicated that the cells were firmly attached to the quartz surface during the frequency increase. The measurements of the maximal oscillation amplitude and the transient decay time constant revealed changes of viscoelastic properties at the QCM surface. An important fraction of these changes was likely due to alterations of cytosolic viscosity, as suggested by treatments of the attached cells with agents affecting the actin and microtubule cytoskeleton. Our results show that viscosity variations of cells can affect the resonance frequency of QCM in the absence of apparent cell desorption. The simultaneous measurements of the maximal oscillation amplitude, the transient decay time constant and the resonance frequency allow an analysis of cell adsorption to solid substratum in real time and complement cell biological methods.


Subject(s)
Biosensing Techniques/methods , Cell Physiological Phenomena , Quartz , Adsorption , Animals , Cell Adhesion/physiology , Cell Movement/physiology , Cytoskeleton/physiology , Epithelial Cells , HeLa Cells , Humans , Kinetics , Microscopy, Fluorescence , Microscopy, Phase-Contrast , Models, Theoretical , Tumor Cells, Cultured , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL