Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Food Microbiol ; 297: 11-20, 2019 May 16.
Article in English | MEDLINE | ID: mdl-30852362

ABSTRACT

The effectiveness of ultraviolet C light (UV-C) delivered in water (WUV) or in peroxyacetic acid (PAA) for the inactivation and inhibition of L. monocytogenes and S. enterica in ready-to-eat 'Iceberg lettuce' and baby spinach leaves, was evaluated throughout chilled storage in modified atmosphere packaging (MAP). The inhibition of pathogen's growth by sequential pretreatments with UV-C in PAA and then biocontrol using Pseudomonas graminis CPA-7 was assessed during MAP storage at 5 °C and upon a breakage of the cold-storage chain. In fresh-cut lettuce, 0 1 kJ/m2 UV-C, in water or in 40 mg/L PAA, inactivated both pathogens by up to 2.1 ±â€¯0.7 log10, which improved the efficacy of water-washing by up to 1.9 log10 and showed bacteriostatic effects on both pathogens. In baby spinach leaves, the combination of 0 3 kJ/m2 UV-C and 40 mg/L PAA reduced S. enterica and L. monocytogenes populations by 1.4 ±â€¯0.2 and 2.2 ±â€¯0.3 log10 respectively, which improved water-washing by 0.8 ±â€¯0.2 log10. Combined treatments (0.1 or 0 3 kJ/m2 WUV and 40 mg/L PAA) inactivated both pathogens in the process solution from lettuce or spinach single sanitation, respectively. Pretreating lettuce with UV-C in PAA reduced L. monocytogenes and S. enterica's growth by up to 0.9 ±â€¯0.1 log10 with respect to the PAA-pretreated control after 6 d at 5 °C in MAP. Upon a cold-chain breakage, CPA-7 prevented S. enterica growth in PAA-pretreated lettuce, whereas showed no effect on L. monocytogenes in any of both matrices. Low-dose UV-C in PAA is a suitable preservation strategy for improving the safety of ready-to-eat leafy greens and reducing the risk of cross contamination.


Subject(s)
Food Microbiology/methods , Lactuca/microbiology , Listeria monocytogenes , Peracetic Acid/pharmacology , Pseudomonas/physiology , Salmonella enterica , Spinacia oleracea/microbiology , Colony Count, Microbial , Escherichia coli O157 , Listeria monocytogenes/drug effects , Listeria monocytogenes/radiation effects , Microbial Interactions , Microbial Viability/drug effects , Microbial Viability/radiation effects , Plant Leaves/microbiology , Salmonella enterica/drug effects , Ultraviolet Rays , Water/chemistry
2.
J Food Sci Technol ; 55(6): 1973-1981, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29892097

ABSTRACT

Brassica vegetables, which include broccoli, kale, cauliflower, and Brussel sprouts, are known for their high glucosinolate content. Glucosinolates and their derived forms namely isothiocyanates are of special interest in the pharmaceutical and food industries due to their antimicrobial, neuroprotective, and anticarcinogenic properties. These compounds are water soluble and heat-sensitive and have been proved to be heavily lost during thermal processing. In addition, previous studies suggested that novel non-thermal technologies such as high pressure processing, pulsed electric fields, or ultraviolet irradiation can affect the glucosinolate content of cruciferous vegetables. The objective of this paper was to review current knowledge about the effects of both thermal and non-thermal processing technologies on the content of glucosinolates and their derived forms in brassica vegetables. This paper also highlights the importance of the incorporation of brassica vegetables into our diet for their health-promoting properties beyond their anticarcinogenic activities.

3.
Int J Food Microbiol ; 262: 55-62, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-28964998

ABSTRACT

To further gain insight into the mechanism by which the biopreservative bacterium Pseudomonas graminis CPA-7 develops its antimicrobial activity, we have examined the effect that the prior interaction stablished by this bacterium and two foodborne pathogens on fresh-cut pear, has on their capacity to colonize human epithelial cells (Caco-2 cell line) which is crucial for establishing infection. CPA-7 inhibited the growth of L. monocytogenes and S. enterica subsp. enterica ser. Enteritidis by 5.5 and 3.1 log10, respectively, after 7d of interaction at 10°C. Furthermore, CPA-7 attenuated the adherence of S. enterica to Caco-2 cells by 0.8 log10 regardless of the pre-adaptation on the fruit. Conversely, the adhesiveness of L. monocytogenes was not influenced by the interaction with the antagonist but it was reduced by 0.5 log10 after incubation on the food matrix. Pathogen-antagonist-food matrix interaction was associated to a significant reduction of the relative invasiveness of both pathogens, by 1.3 log10 in the case of L. monocytogenes and to an undetectable level (below 5CFU/g fruit) for S. enterica. CPA-7 can adhere to and internalize into intestinal epithelium which enables it for competition. Its adherence positively correlates to the multiplicity of infection (MOI) with respect to Caco-2 cells, increasing by 0.6 log10 in an MOI range of 0.1:1 to 100:1. For the same levels of inoculum, internalized cells could only be detected after 7d of pre-adaptation in the fruit (pH4.5-5.0). However, the combination of gastrointestinal digestion and habituation on the fruit resulted in a significant reduction of CPA-7 populations (by 2 log10 more after 7d of incubation than on inoculation day) as well as in the decrease of its adhesiveness (by 0.8 log10) and invasiveness (to undetectable levels).


Subject(s)
Bacterial Adhesion/physiology , Caco-2 Cells/microbiology , Fruit/microbiology , Listeria monocytogenes/growth & development , Probiotics/metabolism , Pseudomonas/physiology , Pyrus/microbiology , Salmonella enterica/growth & development , Cell Line, Tumor , Colony Count, Microbial , Foodborne Diseases/microbiology , Gastrointestinal Tract/microbiology , Humans
4.
Mol Plant Microbe Interact ; 19(4): 399-406, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16610743

ABSTRACT

In order to identify tobacco (Nicotiana megalosiphon) genes involved in broad-spectrum resistance to tobacco blue mold (Peronospora hyoscyami f. sp. tabacina), suppression subtractive hybridization was used to generate cDNA from transcripts that are differentially expressed during an incompatible interaction. After differential screening by membrane-based hybridization, clones corresponding to 182 differentially expressed genes were selected, sequenced, and analyzed. The cDNA collection comprised a broad repertoire of genes associated with various processes. Northern blot analysis of a subset of these genes confirmed the differential expression patterns between the compatible and incompatible interaction. Subsequent virus-induced gene silencing (VIGS) of four genes that were found to be differentially induced was pursued. While VIGS of a lipid transfer protein gene or a glutamate decarboxylase gene in Nicotiana megalosiphon did not affect blue mold resistance, silencing of an EIL2 transcription factor gene and a glutathione synthetase gene was found to compromise the resistance of Nicotiana megalosiphon to P. hyoscyami f. sp. tabacina. Potentially, these genes can be used to engineer resistance in blue mold-susceptible tobacco cultivars.


Subject(s)
Glutathione Synthase/metabolism , Nicotiana/metabolism , Nicotiana/microbiology , Peronospora/physiology , Plant Diseases/microbiology , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Gene Silencing , Glutathione Synthase/genetics , Molecular Sequence Data , Mutation , Plant Leaves/microbiology , Nicotiana/enzymology , Nicotiana/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL