Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters










Publication year range
1.
Lab Anim ; : 236772231198733, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38051824

ABSTRACT

Empirical evidence suggests fishes meet the criteria for experiencing pain beyond a reasonable doubt and zebrafish are being increasingly used in studies of pain and nociception. Zebrafish are adopted across a wide range of experimental fields and their use is growing particularly in biomedical studies. Many laboratory procedures in zebrafish involve tissue damage and this may give rise to pain. Therefore, this FELASA Working Group reviewed the evidence for pain in zebrafish, the indicators used to assess pain and the impact of a range of drugs with pain-relieving properties. We report that there are several behavioural indicators that can be used to determine pain, including reduced activity, space use and distance travelled. Pain-relieving drugs prevent these responses, and we highlight the dose and administration route. To minimise or avoid pain, several refinements are suggested for common laboratory procedures. Finally, practical suggestions are made for the management and alleviation of pain in laboratory zebrafish, including recommendations for analgesia. Pain management is an important refinement in experimental animal use and so our report has the potential to improve zebrafish welfare during and after invasive procedures in laboratories across the globe.

2.
Genomics ; 115(4): 110663, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37286012

ABSTRACT

Antiviral innate immunity is orchestrated by the interferon system, which appeared in ancestors of jawed vertebrates. Interferon upregulation induces hundreds of interferon-stimulated-genes (ISGs) with effector or regulatory functions. Here we investigated the evolutionary diversification of ISG responses through comparison of two salmonid fishes, accounting for the impact of sequential whole genome duplications ancestral to teleosts and salmonids. We analysed the transcriptomic response of the IFN pathway in the head kidney of rainbow trout and Atlantic salmon, which separated 25-30 Mya. We identified a large set of ISGs conserved in both species and cross-referenced them with zebrafish and human ISGs. In contrast, around one-third of salmonid ISG lacked orthologs in human, mouse, chicken or frog, and often between rainbow trout and Atlantic salmon, revealing a fast-evolving, lineage-specific arm of the antiviral response. This study also provides a key resource for in-depth functional analysis of ISGs in salmonids of commercial significance.


Subject(s)
Oncorhynchus mykiss , Zebrafish , Humans , Animals , Mice , Zebrafish/genetics , Genome , Oncorhynchus mykiss/genetics , Interferons/genetics , Antiviral Agents/pharmacology
3.
Int J Mol Sci ; 24(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37373375

ABSTRACT

NF-κB signalling is largely controlled by the family of 'inhibitors of NF-κB' (IκB). The relevant databases indicate that the genome of rainbow trout contains multiple gene copies coding for iκbα (nfkbia), iκbε (nfkbie), iκbδ (nkfbid), iκbζ (nfkbiz), and bcl3, but it lacks iκbß (nfkbib) and iκbη (ankrd42). Strikingly, three nfkbia paralogs are apparently present in salmonid fish, two of which share a high sequence identity, while the third putative nfkbia gene is significantly less like its two paralogs. This particular nfkbia gene product, iκbα, clusters with the human IκBß in a phylogenetic analysis, while the other two iκbα proteins from trout associate with their human IκBα counterpart. The transcript concentrations were significantly higher for the structurally more closely related nfkbia paralogs than for the structurally less similar paralog, suggesting that iκbß probably has not been lost from the salmonid genomes but has been incorrectly designated as iκbα. In the present study, two gene variants coding for iκbα (nfkbia) and iκbε (nfkbie) were prominently expressed in the immune tissues and, particularly, in a cell fraction enriched with granulocytes, monocytes/macrophages, and dendritic cells from the head kidney of rainbow trout. Stimulation of salmonid CHSE-214 cells with zymosan significantly upregulated the iκbα-encoding gene while elevating the copy numbers of the inflammatory markers interleukin-1-beta and interleukin-8. Overexpression of iκbα and iκbε in CHSE-214 cells dose-dependently quenched both the basal and stimulated activity of an NF-κB promoter suggesting their involvement in immune-regulatory processes. This study provides the first functional data on iκbε-versus the well-researched iκbα factor-in a non-mammalian model species.


Subject(s)
NF-kappa B , Salmonidae , Animals , Humans , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha/genetics , NF-KappaB Inhibitor alpha/metabolism , Phylogeny , Signal Transduction , Salmonidae/genetics
4.
Dev Comp Immunol ; 145: 104732, 2023 08.
Article in English | MEDLINE | ID: mdl-37172664

ABSTRACT

The interferon-inducible double-stranded RNA-dependent protein kinase (PKR) is one of the key antiviral arms of the innate immune system. Upon binding of viral double stranded RNA, a viral Pattern Associated Molecular Pattern (PAMP), PKR gets activated and phosphorylates the eukaryotic translation initiation factor 2α (eIF2α) resulting in a protein shut-down that limits viral replication. Since its discovery in the mid-seventies, PKR has been shown to be involved in multiple important cellular processes including apoptosis, proinflammatory and innate immune responses. Viral subversion mechanisms of PKR underline its importance in the antiviral response of the host. PKR activation pathways and its mechanisms of action were previously identified and characterised mostly in mammalian models. However, fish Pkr and fish-specific paralogue Z-DNA-dependent protein kinase (Pkz) also play key role in antiviral defence. This review gives an update on the current knowledge on fish Pkr/Pkz, their conditions of activation and their implication in the immune responses to viruses, in comparison to their mammalian counterparts.


Subject(s)
Antiviral Agents , eIF-2 Kinase , Animals , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Fishes/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Immunity, Innate , RNA, Double-Stranded , Phosphorylation , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Mammals/genetics
5.
Dev Comp Immunol ; 146: 104735, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37187444

ABSTRACT

CD9 is a member of the tetraspanin family, which is characterised by a unique domain structure and conserved motifs. In mammals, CD9 is found in tetraspanin-enriched microdomains (TEMs) on the surface of virtually every cell type. CD9 has a wide variety of roles, including functions within the immune system. Here we show the first in-depth analysis of the cd9 gene family in salmonids, showing that this gene has expanded to six paralogues in three groups (cd9a, cd9b, cd9c) through whole genome duplication events. We suggest that through genome duplications, cd9 has undergone subfunctionalisation in the paralogues and that cd9c1 and cd9c2 in particular are involved in antiviral responses in salmonid fish. We show that these paralogues are significantly upregulated in parallel to classic interferon-stimulated genes (ISGs) active in the antiviral response. Expression analysis of cd9 may therefore become an interesting target to assess teleost responses to viruses.


Subject(s)
Oncorhynchus mykiss , Animals , Phylogeny , Genome , Tetraspanins/genetics , Tetraspanins/metabolism , Antiviral Agents/metabolism , Mammals/genetics
8.
Int J Mol Sci ; 22(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34884614

ABSTRACT

Four 'protein inhibitors of activated STAT' (PIAS) control STAT-dependent and NF-κB-dependent immune signalling in humans. The genome of rainbow trout (Oncorhynchus mykiss) contains eight pias genes, which encode at least 14 different pias transcripts that are differentially expressed in a tissue- and cell-specific manner. Pias1a2 was the most strongly expressed variant among the analysed pias genes in most tissues, while pias4a2 was commonly low or absent. Since the knock-out of Pias factors in salmonid CHSE cells using CRISPR/Cas9 technology failed, three structurally different Pias protein variants were selected for overexpression studies in CHSE-214 cells. All three factors quenched the basal activity of an NF-κB promoter in a dose-dependent fashion, while the activity of an Mx promoter remained unaffected. Nevertheless, all three overexpressed Pias variants from trout strongly reduced the transcript level of the antiviral Stat-dependent mx gene in ifnγ-expressing CHSE-214 cells. Unlike mx, the overexpressed Pias factors modulated the transcript levels of NF-κB-dependent immune genes (mainly il6, il10, ifna3, and stat4) in ifnγ-expressing CHSE-214 cells in different ways. This dissimilar modulation of expression may result from the physical cooperation of the Pias proteins from trout with differential sets of interacting factors bound to distinct nuclear structures, as reflected by the differential nuclear localisation of trout Pias factors. In conclusion, this study provides evidence for the multiplication of pias genes and their sub-functionalisation during salmonid evolution.


Subject(s)
Fish Proteins/metabolism , Gene Expression Regulation , NF-kappa B/metabolism , Oncorhynchus mykiss/metabolism , Protein Inhibitors of Activated STAT/metabolism , STAT Transcription Factors/metabolism , Animals , Fish Proteins/genetics , NF-kappa B/genetics , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/growth & development , Organ Specificity , Phylogeny , Protein Inhibitors of Activated STAT/genetics , STAT Transcription Factors/genetics
9.
J Immunol ; 207(2): 371-375, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34233911

ABSTRACT

The repertoire of Abs is generated by genomic rearrangements during B cell differentiation. Although V(D)J rearrangements lead to repertoires mostly different between individuals, recent studies have shown that they contain a substantial fraction of overrepresented and shared "public" clones. We previously reported a strong public IgHµ clonotypic response against the rhabdovirus viral hemorrhagic septicemia virus in a teleost fish. In this study, we identified an IgL chain associated with this public response that allowed us to characterize its functionality. We show that this public Ab response has a potent neutralizing capacity that is typically associated with host protection during rhabdovirus infections. We also demonstrate that the public response is not restricted to a particular trout isogenic line but expressed in multiple genetic backgrounds and may be used as a marker of successful vaccination. Our work reveals that public B cell responses producing generic Abs constitute a mechanism of protection against infection conserved across vertebrates.


Subject(s)
Antibody Formation/immunology , Fishes/immunology , Mammals/immunology , Animals , B-Lymphocytes/immunology , Clone Cells/immunology , Rhabdoviridae/immunology , Rhabdoviridae Infections/immunology , V(D)J Recombination/immunology , Vaccination/methods
10.
Front Immunol ; 12: 581786, 2021.
Article in English | MEDLINE | ID: mdl-33717065

ABSTRACT

Cholesterol is essential for building and maintaining cell membranes and is critical for several steps in the replication cycle of viruses, especially for enveloped viruses. In mammalian cells virus infections lead to the accumulation of the oxysterol 25-hydroxycholesterol (25HC), an antiviral factor, which is produced from cholesterol by the cholesterol 25 hydroxylase (CH25H). Antiviral responses based on CH25H are not well studied in fish. Therefore, in the present study putative genes encoding for CH25H were identified and amplified in common carp and rainbow trout cells and an HPLC-MS method was applied for determination of oxysterol concentrations in these cells under virus infection. Our results give some evidence that the activation of CH25H could be a part of the antiviral response against a broad spectrum of viruses infecting fish, in both common carp and rainbow trout cells in vitro. Quantification of oxysterols showed that fibroblastic cells are capable of producing 25HC and its metabolite 7α,25diHC. The oxysterol 25HC showed an antiviral activity by blocking the entry of cyprinid herpesvirus 3 (CyHV-3) into KFC cells, but not spring viremia of carp virus (SVCV) or common carp paramyxovirus (Para) in the same cells, or viral haemorrhagic septicaemia virus (VHSV) and infectious pancreatic necrosis virus (IPNV) into RTG-2 cells. Despite the fact that the CH25H based antiviral response coincides with type I IFN responses, the stimulation of salmonid cells with recombinant type I IFN proteins from rainbow trout could not induce ch25h_b gene expression. This provided further evidence, that the CH25H-response is not type I IFN dependent. Interestingly, the susceptibility of CyHV-3 to 25HC is counteracted by a downregulation of the expression of the ch25h_b gene in carp fibroblasts during CyHV-3 infection. This shows a unique interplay between oxysterol based immune responses and immunomodulatory abilities of certain viruses.


Subject(s)
Antiviral Agents/immunology , Herpesviridae/immunology , Hydroxycholesterols/immunology , Rhabdoviridae/immunology , Animals , Antiviral Agents/metabolism , Carps/genetics , Carps/metabolism , Carps/virology , Cell Line , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , Gene Expression Regulation/immunology , Herpesviridae/physiology , Host-Pathogen Interactions/immunology , Hydroxycholesterols/metabolism , Interferon Type I/genetics , Interferon Type I/immunology , Interferon Type I/metabolism , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/metabolism , Rhabdoviridae/physiology , Virus Internalization , Virus Replication/immunology
11.
Vaccines (Basel) ; 9(2)2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33671162

ABSTRACT

Traditionally, commercial testing for vaccine efficacy has relied on the mass infection of vaccinated and unvaccinated animals and the comparison of mortality prevalence and incidence. For some infection models where disease does not cause mortality this approach to testing vaccine efficacy is not useful. Additionally, in fish experimental studies on vaccine efficacy and immune response the norm is that several individuals are lethally sampled at sequential timepoints, and results are extrapolated to represent the kinetics of immune and disease parameters of an individual fish over the entire experimental infection period. In the present study we developed a new approach to vaccine testing for viremic viruses in fish by following the same individuals over the course of a DNA vaccination and experimental infection through repeated blood collection and analyses. Injectable DNA vaccines are particularly efficient against viral disease in fish. To date, two DNA vaccines have been authorised for use in fish farming, one in Canada against Infectious Haemorrhagic Necrotic virus and more recently one in Europe against Salmon Pancreatic Disease virus (SPDv) subtype 3. In the current study we engineered and used an experimental DNA vaccine against SPDv subtype 1. We measured viremia using a reporter cell line system and demonstrated that the viremia phase was completely extinguished following DNA vaccination. Differences in viremia infection kinetics between fish in the placebo group could be related to subsequent antibody levels in the individual fish, with higher antibody levels at terminal sampling in fish showing earlier viremia peaks. The results indicate that sequential non-lethal sampling can highlight associations between infection traits and immune responses measured at asynchronous timepoints and, can provide biological explanations for variation in data. Similar to results observed for the SPDv subtype 3 DNA vaccine, the SPDv subtype 1 DNA vaccine also induced an interferon type 1 response after vaccination and provided high protection against SPDv under laboratory conditions when fish were challenged at 7 weeks post-vaccination.

12.
Genes (Basel) ; 12(2)2021 02 08.
Article in English | MEDLINE | ID: mdl-33567584

ABSTRACT

Interferon regulatory factors (IRFs) as a family, are major regulators of the innate antiviral response in vertebrates principally involved in regulating the expression of interferons (IFNs) and interferon-stimulated genes (ISGs). To date, nine IRFs have been identified in mammals with a 10th member also found in several avian and fish species. Through genome mining and phylogenetic analysis, we identified and characterised 23 irf genes in 6 salmonid species. This larger repertoire of IRF in salmonids results from two additional whole-genome duplications which occurred in early teleosts and salmonids, respectively. Synteny analysis was then used to identify and confirm which paralogues belonged to each subgroup and a new nomenclature was assigned to the salmonid IRFs. Furthermore, we present a full set of Real-Time PCR primers for all rainbow trout IRFs, confirmed by sequencing to ensure paralogue specificity. RT PCR was then used to examine the response of all trout irf genes in vivo, following Vibrio anguillarum and poly I:C stimulation, indicating potential functional divergence between paralogues. Overall, this study presents a comprehensive overview of the IRF family in salmonids and highlights some novel roles for the salmonid-specific IRFs in immunity.


Subject(s)
Evolution, Molecular , Interferon Regulatory Factors/genetics , Interferons/genetics , Salmonidae/genetics , Animals , Genome/genetics , Multigene Family/genetics
13.
Dev Comp Immunol ; 116: 103929, 2021 03.
Article in English | MEDLINE | ID: mdl-33271121

ABSTRACT

The stat gene family diversified during early vertebrate evolution thanks to two rounds of whole genome duplication (WGD) to produce a typical repertoire composed of 6 STAT factors (named 1-6). In contrast, only one or two stat genes have been reported in C. elegans and in D. melanogaster. The main types of STAT found from bony fish to mammals are present in Agnathan genomes, but a typical STAT1-6 repertoire is only observed in jawed vertebrates. Comparative syntenies showed that STAT6 was the closest to the ancestor of the family. An extensive survey of stat genes across fish including polyploid species showed that whole genome duplications did not lead to a uniform expansion of stat genes. While 2 to 5 stat1 are present in salmonids, whose genome duplicated about 35My ago, only one copy of stat2 and stat6 is retained. In contrast, common carp, with a recent whole genome duplication (5-10My), possesses a doubled stat repertoire indicating that the elimination of stat2 and stat6 additional copies is not immediate. Altogether our data shed light on the multiplicity of evolutionary pathways followed by key components of the canonical cytokine receptor signalling pathway, and point to differential selective constraints exerted on these factors.


Subject(s)
Fishes/genetics , STAT Transcription Factors/genetics , Animals , Evolution, Molecular , Fishes/classification , Fishes/immunology , Gene Duplication , Gene Expression/immunology , Genetic Variation , Genome , Multigene Family , Phylogeny , Receptors, Cytokine , Signal Transduction/genetics , Synteny , Vertebrates/classification , Vertebrates/genetics , Vertebrates/immunology
14.
Front Genet ; 11: 677, 2020.
Article in English | MEDLINE | ID: mdl-32754193

ABSTRACT

Infectious diseases represent a major threat for the sustainable development of fish farming. Efficient vaccines are not available against all diseases, and growing antibiotics resistance limits the use of antimicrobial drugs in aquaculture. It is therefore important to understand the basis of fish natural resistance to infections to help genetic selection and to develop new approaches against infectious diseases. However, the identification of the main mechanisms determining the resistance or susceptibility of a host to a pathogenic microbe is challenging, integrating the complexity of the variation of host genetics, the variability of pathogens, and their capacity of fast evolution and adaptation. Multiple approaches have been used for this purpose: (i) genetic approaches, QTL (quantitative trait loci) mapping or GWAS (genome-wide association study) analysis, to dissect the genetic architecture of disease resistance, and (ii) transcriptomics and functional assays to link the genetic constitution of a fish to the molecular mechanisms involved in its interactions with pathogens. To date, many studies in a wide range of fish species have investigated the genetic determinism of resistance to many diseases using QTL mapping or GWAS analyses. A few of these studies pointed mainly toward adaptive mechanisms of resistance/susceptibility to infections; others pointed toward innate or intrinsic mechanisms. However, in the majority of studies, underlying mechanisms remain unknown. By comparing gene expression profiles between resistant and susceptible genetic backgrounds, transcriptomics studies have contributed to build a framework of gene pathways determining fish responsiveness to a number of pathogens. Adding functional assays to expression and genetic approaches has led to a better understanding of resistance mechanisms in some cases. The development of knock-out approaches will complement these analyses and help to validate putative candidate genes critical for resistance to infections. In this review, we highlight fish isogenic lines as a unique biological material to unravel the complexity of host response to different pathogens. In the future, combining multiple approaches will lead to a better understanding of the dynamics of interaction between the pathogen and the host immune response, and contribute to the identification of potential targets of selection for improved resistance.

15.
Fish Shellfish Immunol ; 106: 374-383, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32738513

ABSTRACT

Salmonid alphavirus (SAV) is the etiological cause of pancreas disease (PD) in Atlantic salmon (Salmo salar). Several vaccines against SAV are in use, but PD still cause significant mortality and concern in European aquaculture, raising the need for optimal tools to monitor SAV immunity. To monitor and control the distribution of PD in Norway, all salmonid farms are regularly screened for SAV by RT-qPCR. While the direct detection of SAV is helpful in the early stages of infection, serological methods could bring additional information on acquired SAV immunity in the later stages. Traditionally, SAV antibodies are monitored in neutralization assays, but they are time-consuming and cumbersome, thus alternative assays are warranted. Enzyme-linked immunosorbent assays (ELISAs) have not yet been successfully used for anti-SAV antibody detection in aquaculture. We aimed to develop a bead-based immunoassay for SAV-specific antibodies. By using detergent-treated SAV particles as antigens, we detected SAV-specific antibodies in plasma collected from both a SAV challenge trial and a field outbreak of PD. Increased levels of SAV-specific antibodies were seen after most fish had become negative for viral RNA. The bead-based assay is time saving compared to virus neutralization assays, and suitable for non-lethal testing due to low sample size requirements. We conclude that the bead-based immunoassay for SAV antibody detection is a promising diagnostic tool to complement SAV screening in aquaculture.


Subject(s)
Alphavirus Infections/veterinary , Fish Diseases/immunology , Pancreatic Diseases/veterinary , Salmo salar , Alphavirus/physiology , Alphavirus Infections/immunology , Alphavirus Infections/virology , Animals , Antibodies, Viral/blood , Fish Diseases/virology , Immunoassay/veterinary , Pancreatic Diseases/immunology , Pancreatic Diseases/virology
16.
BMC Biotechnol ; 20(1): 35, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32576161

ABSTRACT

BACKGROUND: Genome editing is transforming bioscience research, but its application to non-model organisms, such as farmed animal species, requires optimisation. Salmonids are the most important aquaculture species by value, and improving genetic resistance to infectious disease is a major goal. However, use of genome editing to evaluate putative disease resistance genes in cell lines, and the use of genome-wide CRISPR screens is currently limited by a lack of available tools and techniques. RESULTS: In the current study, we developed an optimised protocol using lentivirus transduction for efficient integration of constructs into the genome of a Chinook salmon (Oncorhynchus tshwaytcha) cell line (CHSE-214). As proof-of-principle, two target genes were edited with high efficiency in an EGFP-Cas9 stable CHSE cell line; specifically, the exogenous, integrated EGFP and the endogenous RIG-I locus. Finally, the effective use of antibiotic selection to enrich the successfully edited targeted population was demonstrated. CONCLUSIONS: The optimised lentiviral-mediated CRISPR method reported here increases possibilities for efficient genome editing in salmonid cells, in particular for future applications of genome-wide CRISPR screens for disease resistance.


Subject(s)
CRISPR-Associated Proteins/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Editing/methods , Lentivirus/genetics , Salmonidae/genetics , Animals , CRISPR-Cas Systems , Cell Line , Cell Survival , Disease Resistance/genetics , Genome
17.
Dev Comp Immunol ; 99: 103406, 2019 10.
Article in English | MEDLINE | ID: mdl-31158385

ABSTRACT

Piscine myocarditis virus (PCMV) is a double-stranded RNA virus structurally similar to the Totiviridae family. PCMV is the causative agent of cardiomyopathy syndrome (CMS), a severe cardiac disease that affects farmed Atlantic salmon (Salmo salar). A recent study characterized the host immune response in infected salmon through a transcriptome immune profiling, which confirmed a high regulation of immune and anti-viral genes throughout infection with PCMV. Previously we developed a novel model based on repeated non-lethal blood sampling, enabling the individual monitoring of salmonids during an infection. In the present work, we used this model to describe the host immune response in the blood cells of Atlantic salmon after intramuscular infection with PCMV-containing tissue homogenate over a 77-day period. At the final stage heart samples were also collected to verify the PCMV load, the pathological impact of infection and to compare the transcript profiles to blood. The expression level of a range of key immune genes was determined in the blood and heart samples by real-time PCR. Results indicated selected immune genes (mx, cd8α and γip) were up-regulated in the heart tissue of infected animals at the terminal time point, in comparison to the non-infected fish. When analyzing the blood samples over the course of infection, a significant n up-regulation of mx gene was also observed. The time and number of peaks in the kinetics of expression was different between individuals. The PCMV load and CMS pathology was verified by real-time PCR and histopathology, respectively. No pathogen and no pathology could be detected during the course of the experiment except at the terminal stage (viral load by qPCR and pathology by histology). This study emphasizes the value of non-lethal monitoring for evaluating the health status of fish at early stages of infection and in the absence of clinical signs.


Subject(s)
Cardiomyopathies/veterinary , Fish Diseases/immunology , Salmo salar/immunology , Salmo salar/virology , Totiviridae/immunology , Animals , Aquaculture , Biomarkers/blood , Cardiomyopathies/blood , Cardiomyopathies/immunology , Cardiomyopathies/virology , Fish Diseases/blood , Fish Diseases/virology , Gene Expression Profiling , Heart/virology , Immunity/genetics , Myocardium/pathology , Salmo salar/genetics , Viral Load
18.
J Immunol ; 203(2): 465-475, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31142600

ABSTRACT

IFN belong to a group of cytokines specialized in the immunity to viruses. Upon viral infection, type I IFN is produced and alters the transcriptome of responding cells through induction of a set of IFN stimulated genes (ISGs) with regulatory or antiviral function, resulting in a cellular antiviral state. Fish genomes have both type I IFN and type II IFN (IFN-γ), but no type III (λ) IFN has been identified. Their receptors are not simple counterparts of the mammalian type I/II IFN receptors, because alternative chains are used in type I IFN receptors. The mechanisms of the downstream signaling remain partly undefined. In mammals, members of the signal transducer and activator of family of transcription factors are responsible for the transmission of the signal from cytokine receptors, and STAT2 is required for type I but not type II IFN signaling. In fish, its role in IFN signaling in fish remains unclear. We isolated a Chinook salmon (Oncorhynchus tshawytscha) cell line, GS2, with a stat2 gene knocked out by CRISPR/Cas9 genome editing. In this cell line, the induction of ISGs by stimulation with a recombinant type I IFN is completely obliterated as evidenced by comparative RNA-seq analysis of the transcriptome of GS2 and its parental counterpart, EC. Despite a complete absence of ISGs induction, the GS2 cell line has a remarkable ability to resist to viral infections. Therefore, other STAT2-independent pathways may be induced by the viral infection, illustrating the robustness and redundancy of the innate antiviral defenses in fish.


Subject(s)
Fishes/metabolism , Interferon Type I/metabolism , STAT2 Transcription Factor/metabolism , Signal Transduction/physiology , Animals , CRISPR-Cas Systems/physiology , Cell Line , Gene Editing/methods , Virus Diseases/metabolism
19.
Viruses ; 11(3)2019 03 26.
Article in English | MEDLINE | ID: mdl-30917538

ABSTRACT

The overarching structure of the type I interferon (IFN) system is conserved across vertebrates. However, the variable numbers of whole genome duplication events during fish evolution offer opportunities for the expansion, diversification, and new functionalization of the genes that are involved in antiviral immunity. In this review, we examine how fish models provide new insights about the implication of virus-driven inflammation in immunity and hematopoiesis. Mechanisms that have been discovered in fish, such as the strong adjuvant effect of type I IFN that is used with DNA vaccination, constitute good models to understand how virus-induced inflammatory mechanisms can interfere with adaptive responses. We also comment on new discoveries regarding the role of pathogen-induced inflammation in the development and guidance of hematopoietic stem cells in zebrafish. These findings raise issues about the potential interferences of viral infections with the establishment of the immune system. Finally, the recent development of genome editing provides new opportunities to dissect the roles of the key players involved in the antiviral response in fish, hence enhancing the power of comparative approaches.


Subject(s)
Disease Models, Animal , Interferon Type I/immunology , Signal Transduction/immunology , Virus Diseases/veterinary , Zebrafish/immunology , Zebrafish/virology , Adjuvants, Immunologic , Animals , Gene Editing , Immunity, Innate , Inflammation , Virus Diseases/immunology
20.
Fish Shellfish Immunol ; 85: 126-131, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29410276

ABSTRACT

The utility of molecular response data arising from in-vivo single and repeated measure fish disease-challenge experiments is compared. An in-silico 'experiment' involving the generation of two imaginary immune-molecule quantity response profiles over time for individual animals was carried out. Daily 'observed' molecule quantities were drawn from the 'known' individual response profiles to mimic the results of single and repeated measurement. The results indicate that repeated measure experiments are required to infer individual level response profiles, and that these experiments also provide more accurate summary statistics and data more suited to inferring the dependent ordering of the molecular response. Additionally repeated measure experiments utilise fewer animals than single measure experiments. These results are described alongside a discussion of experimental methodological issues pertinent to the adoption of aquatic animal repeated measure experimental designs. We conclude that investigators need to take particular care when making inferences from single measure experiments and that serious consideration should be given to using repeated measure experiments for in-vivo fish disease-challenge investigations.


Subject(s)
Aquaculture/methods , Computer Simulation , Fish Diseases/immunology , Host-Pathogen Interactions , Animals , Fishes
SELECTION OF CITATIONS
SEARCH DETAIL
...