Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
2.
Intensive Care Med Exp ; 12(1): 65, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080225

ABSTRACT

RATIONALE: Mechanical power (MP) is a summary variable incorporating all causes of ventilator-induced-lung-injury (VILI). We expressed MP as the ratio between observed and normal expected values (MPratio). OBJECTIVE: To define a threshold value of MPratio leading to the development of VILI. METHODS: In a population of 82 healthy pigs, a threshold of MPratio for VILI, as assessed by histological variables and confirmed by using unsupervised cluster analysis was 4.5. The population was divided into two groups with MPratio above or below the threshold. MEASUREMENTS AND MAIN RESULTS: We measured physiological variables every six hours. At the end of the experiment, we measured lung weight and wet-to-dry ratio to quantify edema. Histological samples were analyzed for alveolar ruptures, inflammation, alveolar edema, atelectasis. An MPratio threshold of 4.5 was associated with worse injury, lung weight, wet-to-dry ratio and fluid balance (all p < 0.001). After 48 h, in the two MPratio clusters (above or below 4.5), respiratory system elastance, mean pulmonary artery pressure and physiological dead space differed by 32%, 36% and 22%, respectively (all p < 0.001), being worse in the high MPratio group. Also, the changes in driving pressure, lung elastance, pulmonary artery occlusion pressure, central venous pressure differed by 17%, 64%, 8%, 25%, respectively (all p < 0.001). LIMITATIONS: The main limitation of this study is its retrospective design. In addition, the computation for the expected MP in pigs is based on arbitrary criteria. Different values of expected MP may change the absolute value of MP ratio but will not change the concept of the existence of an injury threshold. CONCLUSIONS: The concept of MPratio is a physiological and intuitive way to quantify the risk of ventilator-induced lung injury. Our results suggest that a mechanical power ratio > 4.5 MPratio in healthy lungs subjected to 48 h of mechanical ventilation appears to be a threshold for the development of ventilator-induced lung injury, as indicated by the convergence of histological, physiological, and anatomical alterations. In humans and in lungs that are already injured, this threshold is likely to be different.

4.
J Clin Med ; 13(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38930073

ABSTRACT

Background: The efficacy of veno-venous extracorporeal membrane oxygenation (VV-ECMO) as rescue therapy for refractory COVID-19-related ARDS (C-ARDS) is still debated. We describe the cohort of C-ARDS patients treated with VV-ECMO at our ECMO center, focusing on factors that may affect in-hospital mortality and describing the time course of lung mechanics to assess prognosis. Methods: We performed a prospective observational study in the intensive care unit at the "Città della Salute e della Scienza" University Hospital in Turin, Italy, between March 2020 and December 2021. Indications and management of ECMO followed the Extracorporeal Life Support Organization (ELSO) guidelines. Results: The 60-day in-hospital mortality was particularly high (85.4%). Non-survivor patients were more frequently treated with non-invasive ventilatory support and steroids before ECMO (95.1% vs. 57.1%, p = 0.018 and 73.2% vs. 28.6%, p = 0.033, respectively), while hypertension was the only pre-ECMO factor independently associated with in-hospital mortality (HR: 2.06, 95%CI: 1.06-4.00). High rates of bleeding (85.4%) and superinfections (91.7%) were recorded during ECMO, likely affecting the overall length of ECMO (18 days, IQR: 10-24) and the hospital stay (32 days, IQR: 24-47). Static lung compliance was lower in non-survivors (p = 0.031) and differed over time (p = 0.049), decreasing by 48% compared to initial values in non-survivors. Conclusions: Our data suggest the importance of considering NIS among the common ECMO eligibility criteria and changes in lung compliance during ECMO as a prognostic marker.

8.
Intensive Care Med Exp ; 12(1): 31, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512544

ABSTRACT

BACKGROUND: The individual components of mechanical ventilation may have distinct effects on kidney perfusion and on the risk of developing acute kidney injury; we aimed to explore ventilatory predictors of acute kidney failure and the hemodynamic changes consequent to experimental high-power mechanical ventilation. METHODS: Secondary analysis of two animal studies focused on the outcomes of different mechanical power settings, including 78 pigs mechanically ventilated with high mechanical power for 48 h. The animals were categorized in four groups in accordance with the RIFLE criteria for acute kidney injury (AKI), using the end-experimental creatinine: (1) NO AKI: no increase in creatinine; (2) RIFLE 1-Risk: increase of creatinine of > 50%; (3) RIFLE 2-Injury: two-fold increase of creatinine; (4) RIFLE 3-Failure: three-fold increase of creatinine; RESULTS: The main ventilatory parameter associated with AKI was the positive end-expiratory pressure (PEEP) component of mechanical power. At 30 min from the initiation of high mechanical power ventilation, the heart rate and the pulmonary artery pressure progressively increased from group NO AKI to group RIFLE 3. At 48 h, the hemodynamic variables associated with AKI were the heart rate, cardiac output, mean perfusion pressure (the difference between mean arterial and central venous pressures) and central venous pressure. Linear regression and receiving operator characteristic analyses showed that PEEP-induced changes in mean perfusion pressure (mainly due to an increase in CVP) had the strongest association with AKI. CONCLUSIONS: In an experimental setting of ventilation with high mechanical power, higher PEEP had the strongest association with AKI. The most likely physiological determinant of AKI was an increase of pleural pressure and CVP with reduced mean perfusion pressure. These changes resulted from PEEP per se and from increase in fluid administration to compensate for hemodynamic impairment consequent to high PEEP.

9.
Physiol Rep ; 12(4): e15954, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38366303

ABSTRACT

INTRODUCTION: The use of the pulmonary artery catheter has decreased overtime; central venous blood gases are generally used in place of mixed venous samples. We want to evaluate the accuracy of oxygen and carbon dioxide related parameters from a central versus a mixed venous sample, and whether this difference is influenced by mechanical ventilation. MATERIALS AND METHODS: We analyzed 78 healthy female piglets ventilated with different mechanical power. RESULTS: There was a significant difference in oxygen-derived parameters between samples taken from the central venous and mixed venous blood (S v ¯ $$ \overline{v} $$ O2 = 74.6%, ScvO2 = 83%, p < 0.0001). Conversely, CO2-related parameters were similar, with strong correlation. Ventilation with higher mechanical power and PEEP increased the difference between oxygen saturations, (Δ[ScvO2-S v ¯ $$ \overline{v} $$ O2 ] = 7.22% vs. 10.0% respectively in the low and high MP groups, p = 0.020); carbon dioxide-related parameters remained unchanged (p = 0.344). CONCLUSIONS: The venous oxygen saturation (central or mixed) may be influenced by the effects of mechanical ventilation. Therefore, central venous data should be interpreted with more caution when using higher mechanical power. On the contrary, carbon dioxide-derived parameters are more stable and similar between the two sampling sites, independently of mechanical power or positive end expiratory pressures.


Subject(s)
Carbon Dioxide , Oxygen , Animals , Swine , Female , Oximetry , Blood Gas Analysis , Positive-Pressure Respiration
10.
Intensive Care Med Exp ; 12(1): 6, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38273120

ABSTRACT

INTRODUCTION: Lung weight is an important study endpoint to assess lung edema in porcine experiments on acute respiratory distress syndrome and ventilatory induced lung injury. Evidence on the relationship between lung-body weight relationship is lacking in the literature. The aim of this work is to provide a reference equation between normal lung and body weight in female domestic piglets. MATERIALS AND METHODS: 177 healthy female domestic piglets from previous studies were included in the analysis. Lung weight was assessed either via a CT-scan before any experimental injury or with a scale after autopsy. The animals were randomly divided in a training (n = 141) and a validation population (n = 36). The relation between body weight and lung weight index (lung weight/body weight, g/kg) was described by an exponential function on the training population. The equation was tested on the validation population. A Bland-Altman analysis was performed to compare the lung weight index in the validation population and its theoretical value calculated with the reference equation. RESULTS: A good fit was found between the validation population and the exponential equation extracted from the training population (RMSE = 0.060). The equation to determine lung weight index from body weight was: [Formula: see text] At the Bland and Altman analyses, the mean bias between the real and the expected lung weight index was - 0.26 g/kg (95% CI - 0.96-0.43), upper LOA 3.80 g/kg [95% CI 2.59-5.01], lower LOA - 4.33 g/kg [95% CI = - 5.54-(- 3.12)]. CONCLUSIONS: This exponential function might be a valuable tool to assess lung edema in experiments involving 16-50 kg female domestic piglets. The error that can be made due to the 95% confidence intervals of the formula is smaller than the one made considering the lung to body weight as a linear relationship.

13.
14.
Am J Respir Crit Care Med ; 206(8): 973-980, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35608503

ABSTRACT

Rationale: Weaning from venovenous extracorporeal membrane oxygenation (VV-ECMO) is based on oxygenation and not on carbon dioxide elimination. Objectives: To predict readiness to wean from VV-ECMO. Methods: In this multicenter study of mechanically ventilated adults with severe acute respiratory distress syndrome receiving VV-ECMO, we investigated a variable based on CO2 elimination. The study included a prospective interventional study of a physiological cohort (n = 26) and a retrospective clinical cohort (n = 638). Measurements and Main Results: Weaning failure in the clinical and physiological cohorts were 37% and 42%, respectively. The main cause of failure in the physiological cohort was high inspiratory effort or respiratory rate. All patients exhaled similar amounts of CO2, but in patients who failed the weaning trial, [Formula: see text]e was higher to maintain the PaCO2 unchanged. The effort to eliminate one unit-volume of CO2, was double in patients who failed (68.9 [42.4-123] vs. 39 [20.1-57] cm H2O/[L/min]; P = 0.007), owing to the higher physiological Vd (68 [58.73] % vs. 54 [41.64] %; P = 0.012). End-tidal partial carbon dioxide pressure (PetCO2)/PaCO2 ratio was a clinical variable strongly associated with weaning outcome at baseline, with area under the receiver operating characteristic curve of 0.87 (95% confidence interval [CI], 0.71-1). Similarly, the PetCO2/PaCO2 ratio was associated with weaning outcome in the clinical cohort both before the weaning trial (odds ratio, 4.14; 95% CI, 1.32-12.2; P = 0.015) and at a sweep gas flow of zero (odds ratio, 13.1; 95% CI, 4-44.4; P < 0.001). Conclusions: The primary reason for weaning failure from VV-ECMO is high effort to eliminate CO2. A higher PetCO2/PaCO2 ratio was associated with greater likelihood of weaning from VV-ECMO.


Subject(s)
Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Adult , Carbon Dioxide , Humans , Prospective Studies , Respiratory Distress Syndrome/therapy , Retrospective Studies
15.
Physiol Rep ; 10(6): e15225, 2022 03.
Article in English | MEDLINE | ID: mdl-35340133

ABSTRACT

The extent of ventilator-induced lung injury may be related to the intensity of mechanical ventilation--expressed as mechanical power. In the present study, we investigated whether there is a safe threshold, below which lung damage is absent. Three groups of six healthy pigs (29.5 ± 2.5 kg) were ventilated prone for 48 h at mechanical power of 3, 7, or 12 J/min. Strain never exceeded 1.0. PEEP was set at 4 cmH2 O. Lung volumes were measured every 12 h; respiratory, hemodynamics, and gas exchange variables every 6. End-experiment histological findings were compared with a control group of eight pigs which did not undergo mechanical ventilation. Functional residual capacity decreased by 10.4% ± 10.6% and 8.1% ± 12.1% in the 7 J and 12 J groups (p = 0.017, p < 0.001) but not in the 3 J group (+1.7% ± 17.7%, p = 0.941). In 3 J group, lung elastance, PaO2 and PaCO2 were worse compared to 7 J and 12 J groups (all p < 0.001), due to lower ventilation-perfusion ratio (0.54 ± 0.13, 1.00 ± 0.25, 1.78 ± 0.36 respectively, p < 0.001). The lung weight was lower (p < 0.001) in the controls (6.56 ± 0.90 g/kg) compared to 3, 7, and 12 J groups (12.9 ± 3.0, 16.5 ± 2.9, and 15.0 ± 4.1 g/kg, respectively). The wet-to-dry ratio was 5.38 ± 0.26 in controls, 5.73 ± 0.52 in 3 J, 5.99 ± 0.38 in 7 J, and 6.13 ± 0.59 in 12 J group (p = 0.03). Vascular congestion was more extensive in the 7 J and 12 J compared to 3 J and control groups. Mechanical ventilation (with anesthesia/paralysis) increase lung weight, and worsen lung histology, regardless of the mechanical power. Ventilating at 3 J/min led to better anatomical variables than at 7 and 12 J/min but worsened the physiological values.


Subject(s)
Respiration, Artificial , Ventilator-Induced Lung Injury , Animals , Lung/pathology , Respiration, Artificial/adverse effects , Respiratory Function Tests , Respiratory Rate , Swine
16.
Intensive Care Med ; 48(1): 56-66, 2022 01.
Article in English | MEDLINE | ID: mdl-34825929

ABSTRACT

PURPOSE: This study aimed at investigating the mechanisms underlying the oxygenation response to proning and recruitment maneuvers in coronavirus disease 2019 (COVID-19) pneumonia. METHODS: Twenty-five patients with COVID-19 pneumonia, at variable times since admission (from 1 to 3 weeks), underwent computed tomography (CT) lung scans, gas-exchange and lung-mechanics measurement in supine and prone positions at 5 cmH2O and during recruiting maneuver (supine, 35 cmH2O). Within the non-aerated tissue, we differentiated the atelectatic and consolidated tissue (recruitable and non-recruitable at 35 cmH2O of airway pressure). Positive/negative response to proning/recruitment was defined as increase/decrease of PaO2/FiO2. Apparent perfusion ratio was computed as venous admixture/non aerated tissue fraction. RESULTS: The average values of venous admixture and PaO2/FiO2 ratio were similar in supine-5 and prone-5. However, the PaO2/FiO2 changes (increasing in 65% of the patients and decreasing in 35%, from supine to prone) correlated with the balance between resolution of dorsal atelectasis and formation of ventral atelectasis (p = 0.002). Dorsal consolidated tissue determined this balance, being inversely related with dorsal recruitment (p = 0.012). From supine-5 to supine-35, the apparent perfusion ratio increased from 1.38 ± 0.71 to 2.15 ± 1.15 (p = 0.004) while PaO2/FiO2 ratio increased in 52% and decreased in 48% of patients. Non-responders had consolidated tissue fraction of 0.27 ± 0.1 vs. 0.18 ± 0.1 in the responding cohort (p = 0.04). Consolidated tissue, PaCO2 and respiratory system elastance were higher in patients assessed late (all p < 0.05), suggesting, all together, "fibrotic-like" changes of the lung over time. CONCLUSION: The amount of consolidated tissue was higher in patients assessed during the third week and determined the oxygenation responses following pronation and recruitment maneuvers.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Lung/diagnostic imaging , Prone Position , Prospective Studies , Pulmonary Gas Exchange , SARS-CoV-2
17.
Front Physiol ; 12: 743153, 2021.
Article in English | MEDLINE | ID: mdl-34588999

ABSTRACT

Background: Ventilator-induced lung injury (VILI) via respiratory mechanics is deeply interwoven with hemodynamic, kidney and fluid/electrolyte changes. We aimed to assess the role of positive fluid balance in the framework of ventilation-induced lung injury. Methods: Post-hoc analysis of seventy-eight pigs invasively ventilated for 48 h with mechanical power ranging from 18 to 137 J/min and divided into two groups: high vs. low pleural pressure (10.0 ± 2.8 vs. 4.4 ± 1.5 cmH2O; p < 0.01). Respiratory mechanics, hemodynamics, fluid, sodium and osmotic balances, were assessed at 0, 6, 12, 24, 48 h. Sodium distribution between intracellular, extracellular and non-osmotic sodium storage compartments was estimated assuming osmotic equilibrium. Lung weight, wet-to-dry ratios of lung, kidney, liver, bowel and muscle were measured at the end of the experiment. Results: High pleural pressure group had significant higher cardiac output (2.96 ± 0.92 vs. 3.41 ± 1.68 L/min; p < 0.01), use of norepinephrine/epinephrine (1.76 ± 3.31 vs. 5.79 ± 9.69 mcg/kg; p < 0.01) and total fluid infusions (3.06 ± 2.32 vs. 4.04 ± 3.04 L; p < 0.01). This hemodynamic status was associated with significantly increased sodium and fluid retention (at 48 h, respectively, 601.3 ± 334.7 vs. 1073.2 ± 525.9 mmol, p < 0.01; and 2.99 ± 2.54 vs. 6.66 ± 3.87 L, p < 0.01). Ten percent of the infused sodium was stored in an osmotically inactive compartment. Increasing fluid and sodium retention was positively associated with lung-weight (R 2 = 0.43, p < 0.01; R 2 = 0.48, p < 0.01) and with wet-to-dry ratio of the lungs (R 2 = 0.14, p < 0.01; R 2 = 0.18, p < 0.01) and kidneys (R 2 = 0.11, p = 0.02; R 2 = 0.12, p = 0.01). Conclusion: Increased mechanical power and pleural pressures dictated an increase in hemodynamic support resulting in proportionally increased sodium and fluid retention and pulmonary edema.

18.
Am J Respir Crit Care Med ; 203(3): 318-327, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32813989

ABSTRACT

Rationale: Understanding the physiology of CO2 stores mobilization is a prerequisite for intermittent extracorporeal CO2 removal (ECCO2R) in patients with chronic hypercapnia.Objectives: To describe the dynamics of CO2 stores.Methods: Fifteen pigs (61.7 ± 4.3 kg) were randomized to 48 hours of hyperventilation (group "Hyper," n = 4); 48 hours of hypoventilation (group "Hypo," n = 4); 24 hours of hypoventilation plus 24 hours of normoventilation (group "Hypo-Baseline," n = 4); or 24 hours of hypoventilation plus 24 hours of hypoventilation plus ECCO2R (group "Hypo-ECCO2R," n = 3). Forty-eight hours after randomization, the current [Formula: see text]e was reduced by 50% in every pig.Measurements and Main Results: We evaluated [Formula: see text]co2, [Formula: see text]o2, and metabolic [Formula: see text]co2 ([Formula: see text]o2 times the metabolic respiratory quotient). Changes in the CO2 stores were calculated as [Formula: see text]co2 - metabolic V̇co2. After 48 hours, the CO2 stores decreased by 0.77 ± 0.17 l kg-1 in group Hyper and increased by 0.32 ± 0.27 l kg-1 in group Hypo (P = 0.030). In group Hypo-Baseline, they increased by 0.08 ± 0.19 l kg-1, whereas in group Hypo-ECCO2R, they decreased by 0.32 ± 0.24 l kg-1 (P = 0.197). In the second 24-hour period, in groups Hypo-Baseline and Hypo-ECCO2R, the CO2 stores decreased by 0.15 ± 0.09 l kg-1 and 0.51 ± 0.06 l kg-1, respectively (P = 0.002). At the end of the experiment, the 50% reduction of [Formula: see text]e caused a PaCO2 rise of 9.3 ± 1.1, 32.0 ± 5.0, 16.9 ± 1.2, and 11.7 ± 2.0 mm Hg h-1 in groups Hyper, Hypo, Hypo-Baseline, and Hypo-ECCO2R, respectively (P < 0.001). The PaCO2 rise was inversely related to the previous CO2 stores mobilization (P < 0.001).Conclusions: CO2 from body stores can be mobilized over 48 hours without reaching a steady state. This provides a physiological rationale for intermittent ECCO2R in patients with chronic hypercapnia.


Subject(s)
Acid-Base Equilibrium/physiology , Carbon Dioxide/metabolism , Chronic Disease/therapy , Hypercapnia/therapy , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/therapy , Pulmonary Gas Exchange/physiology , Animals , Extracorporeal Membrane Oxygenation , Humans , Models, Animal , Swine
19.
Ann Transl Med ; 8(12): 788, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32647713

ABSTRACT

This review aims at evaluating the role and the effectiveness of basic hemodynamic monitoring to guide and to titrate fluid administration during acute circulatory dysfunction. Fluid infusion is a cornerstone of the management of acute circulatory dysfunction. This is a time-related situation, which should be promptly faced to avoid multi organ dysfunction. For this purpose, the recognition of clinical signs of acute circulatory dysfunction is of pivotal importance. A prompt fluid resuscitation in the early phase of acute circulatory failure is a key and recommended intervention, on the other hand the hemodynamic targets and the safety limits indicating whether or not stopping this treatment in already resuscitated patients are still undefined. Bedside clinical examination has been demonstrated to be a reliable instrument to recognize the mismatch between cardiac function and peripheral oxygen demand. Mottling skin and capillary refill time have been recently proposed using a semi-quantitative approach as reliable tool to guide shock therapy; lactate level, central venous oxygen saturation and venous-to-arterial CO2 tension difference are also useful to track the effect of the therapies overtime. Finally, the availability of echocardiography miniaturization of the machines has boosted this technique as part of the daily clinical assessment of patient, inside and outside the intensive care units (ICUs).

20.
Crit Care Med ; 47(1): 33-40, 2019 01.
Article in English | MEDLINE | ID: mdl-30239381

ABSTRACT

OBJECTIVES: Minimally invasive extracorporeal CO2 removal is an accepted supportive treatment in chronic obstructive pulmonary disease patients. Conversely, the potential of such technique in treating acute respiratory distress syndrome patients remains to be investigated. The aim of this study was: 1) to quantify membrane lung CO2 removal (VCO2ML) under different conditions and 2) to quantify the natural lung CO2 removal (VCO2NL) and to what extent mechanical ventilation can be reduced while maintaining total expired CO2 (VCO2tot = VCO2ML + VCO2NL) and arterial PCO2 constant. DESIGN: Experimental animal study. SETTING: Department of Experimental Animal Medicine, University of Göttingen, Germany. SUBJECTS: Eight healthy pigs (57.7 ± 5 kg). INTERVENTIONS: The animals were sedated, ventilated, and connected to the artificial lung system (surface 1.8 m, polymethylpentene membrane, filling volume 125 mL) through a 13F catheter. VCO2ML was measured under different combinations of inflow PCO2 (38.9 ± 3.3, 65 ± 5.7, and 89.9 ± 12.9 mm Hg), extracorporeal blood flow (100, 200, 300, and 400 mL/min), and gas flow (4, 6, and 12 L/min). At each setting, we measured VCO2ML, VCO2NL, lung mechanics, and blood gases. MEASUREMENTS AND MAIN RESULTS: VCO2ML increased linearly with extracorporeal blood flow and inflow PCO2 but was not affected by gas flow. The outflow PCO2 was similar regardless of inflow PCO2 and extracorporeal blood flow, suggesting that VCO2ML was maximally exploited in each experimental condition. Mechanical ventilation could be reduced by up to 80-90% while maintaining a constant PaCO2. CONCLUSIONS: Minimally invasive extracorporeal CO2 removal removes a relevant amount of CO2 thus allowing mechanical ventilation to be significantly reduced depending on extracorporeal blood flow and inflow PCO2. Extracorporeal CO2 removal may provide the physiologic prerequisites for controlling ventilator-induced lung injury.


Subject(s)
Extracorporeal Membrane Oxygenation/methods , Animals , Carbon Dioxide/blood , Catheterization, Central Venous , Models, Animal , Respiratory Insufficiency/therapy , Swine , Ventilator Weaning
SELECTION OF CITATIONS
SEARCH DETAIL