Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Lancet Microbe ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38761816

ABSTRACT

BACKGROUND: A self-assembling SARS-CoV-2 WA-1 recombinant spike ferritin nanoparticle (SpFN) vaccine co-formulated with Army Liposomal Formulation (ALFQ) adjuvant containing monophosphoryl lipid A and QS-21 (SpFN/ALFQ) has shown protective efficacy in animal challenge models. This trial aims to assess the safety and immunogenicity of SpFN/ALFQ in a first-in-human clinical trial. METHODS: In this phase 1, randomised, double-blind, placebo-controlled, first-in-human clinical trial, adults were randomly assigned (5:5:2) to receive 25 µg or 50 µg of SpFN/ALFQ or saline placebo intramuscularly at day 1 and day 29, with an optional open-label third vaccination at day 181. Enrolment and randomisation occurred sequentially by group; randomisation was done by an interactive web-based randomisation system and only designated unmasked study personnel had access to the randomisation code. Adults were required to be seronegative and unvaccinated for inclusion. Local and systemic reactogenicity, adverse events, binding and neutralising antibodies, and antigen-specific T-cell responses were quantified. For safety analyses, exact 95% Clopper-Pearson CIs for the probability of any incidence of an unsolicited adverse event was computed for each group. For immunogenicity results, CIs for binary variables were computed using the exact Clopper-Pearson methodology, while CIs for geometric mean titres were based on 10 000 empirical bootstrap samples. Post-hoc, paired one-sample t tests were used to assess the increase in mean log-10 neutralising antibody titres between day 29 and day 43 (after the second vaccination) for the primary SARS-CoV-2 targets of interest. This trial is registered at ClinicalTrials.gov, NCT04784767, and is closed to new participants. FINDINGS: Between April 7, and June 29, 2021, 29 participants were enrolled in the study. 20 individuals were assigned to receive 25 µg SpFN/ALFQ, four to 50 µg SpFN/ALFQ, and five to placebo. Neutralising antibody responses peaked at day 43, 2 weeks after the second dose. Neutralisation activity against multiple omicron subvariants decayed more slowly than against the D614G or beta variants until 5 months after second vaccination for both dose groups. CD4+ T-cell responses were elicited 4 weeks after the first dose and were boosted after a second dose of SpFN/ALFQ for both dose groups. Neutralising antibody titres against early omicron subvariants and clade 1 sarbecoviruses were detectable after two immunisations and peaked after the third immunisation for both dose groups. Neutralising antibody titres against XBB.1.5 were detected after three vaccinations. Passive IgG transfer from vaccinated volunteers into Syrian golden hamsters controlled replication of SARS-CoV-1 after challenge. INTERPRETATION: SpFN/ALFQ was well tolerated and elicited robust and durable binding antibody and neutralising antibody titres against a broad panel of SARS-CoV-2 variants and other sarbecoviruses. FUNDING: US Department of Defense, Defense Health Agency.

2.
Nat Commun ; 15(1): 200, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172512

ABSTRACT

The repeat emergence of SARS-CoV-2 variants of concern (VoC) with decreased susceptibility to vaccine-elicited antibodies highlights the need to develop next-generation vaccine candidates that confer broad protection. Here we describe the antibody response induced by the SARS-CoV-2 Spike Ferritin Nanoparticle (SpFN) vaccine candidate adjuvanted with the Army Liposomal Formulation including QS21 (ALFQ) in non-human primates. By isolating and characterizing several monoclonal antibodies directed against the Spike Receptor Binding Domain (RBD), N-Terminal Domain (NTD), or the S2 Domain, we define the molecular recognition of vaccine-elicited cross-reactive monoclonal antibodies (mAbs) elicited by SpFN. We identify six neutralizing antibodies with broad sarbecovirus cross-reactivity that recapitulate serum polyclonal antibody responses. In particular, RBD mAb WRAIR-5001 binds to the conserved cryptic region with high affinity to sarbecovirus clades 1 and 2, including Omicron variants, while mAb WRAIR-5021 offers complete protection from B.1.617.2 (Delta) in a murine challenge study. Our data further highlight the ability of SpFN vaccination to stimulate cross-reactive B cells targeting conserved regions of the Spike with activity against SARS CoV-1 and SARS-CoV-2 variants.


Subject(s)
Nanoparticles , Severe acute respiratory syndrome-related coronavirus , Animals , Mice , Antibodies, Neutralizing , Macaca mulatta , Vaccination , Antibodies, Viral , Antibodies, Monoclonal , COVID-19 Vaccines , Ferritins , Spike Glycoprotein, Coronavirus/genetics
3.
Emerg Microbes Infect ; 13(1): 2294859, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38088796

ABSTRACT

Identification of the diverse animal hosts responsible for spill-over events from animals to humans is crucial for comprehending the transmission patterns of emerging infectious diseases, which pose significant public health risks. To better characterize potential animal hosts of Lassa virus (LASV), we assessed domestic and non-domestic animals from 2021-2022 in four locations in southern Nigeria with reported cases of Lassa fever (LF). Birds, lizards, and domestic mammals (dogs, pigs, cattle and goats) were screened using RT-qPCR, and whole genome sequencing was performed for lineage identification on selected LASV positive samples. Animals were also screened for exposure to LASV by enzyme-linked immunosorbent assay (ELISA). Among these animals, lizards had the highest positivity rate by PCR. Genomic sequencing of samples in most infected animals showed sub-lineage 2 g of LASV. Seropositivity was highest among cattle and lowest in pigs. Though the specific impact these additional hosts may have in the broader virus-host context are still unknown - specifically relating to pathogen diversity, evolution, and transmission - the detection of LASV in non-rodent hosts living in proximity to confirmed human LF cases suggests their involvement during transmission as potential reservoirs. Additional epidemiological data comparing viral genomes from humans and animals, as well as those circulating within the environment will be critical in understanding LASV transmission dynamics and will ultimately guide the development of countermeasures for this zoonotic health threat.


Subject(s)
Lassa Fever , Lassa virus , Humans , Animals , Cattle , Dogs , Swine , Lassa virus/genetics , Lassa Fever/epidemiology , Lassa Fever/veterinary , Lassa Fever/genetics , Nigeria/epidemiology , Genome, Viral , Public Health , Mammals
4.
NPJ Vaccines ; 8(1): 155, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37821505

ABSTRACT

Adenoviruses (AdVs) cause infections in humans that range from mild to severe, and can cause outbreaks particularly in close contact settings. Several human AdV types have been identified, which can cause a wide array of clinical manifestations. AdV types 4 and 7 (AdV-4 and AdV-7), which are among the most commonly circulating types in the United States, are known to cause acute respiratory disease that can result in hospitalization and rarely, death. Currently, the only vaccines approved for use in humans are live virus vaccines against AdV-4 and AdV-7, though these vaccines are only authorized for use in U.S. military personnel. While they are efficacious, use of these live virus vaccines carries considerable risks of vaccine-associated viral shedding and recombination. Here, we present an alternative vaccination strategy against AdV-7 using the virus-like particle platform (AdVLP-7). We describe the production of stable recombinant AdVLP-7, and demonstrate that AdVLP-7 is structurally analogous to wild-type AdV-7 virions (WT AdV-7). Preclinical immunogenicity studies in mice show that AdVLP-7 elicits a potent humoral immune response, comparable to that observed in mice immunized with WT AdV-7. Specifically, AdVLP-7 induces high titers of antibodies against AdV-7-specific antigens that can effectively neutralize AdV-7.

5.
Vaccines (Basel) ; 11(7)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37514960

ABSTRACT

The FDA-approved Adenovirus Type 4 and Type 7 Vaccine, Live, Oral is highly effective and essential in preventing acute respiratory diseases (ARDs) in U.S. military recruits. Our study revealed the presence of a previously undetected mutation, not found in the wild-type human adenovirus type 4 (HAdV-4) component of the licensed vaccine, which contains an amino acid substitution (P388T) in the pre-terminal protein (pTP). This study demonstrated that replication of the T388 HAdV-4 vaccine mutant virus is favored over the wild type in WI-38 cells, the cell type utilized in vaccine manufacturing. However, results from serial human stool specimens of vaccine recipients support differential genome replication in the gastrointestinal tract (GI), demonstrated by the steady decline of the percentage of mutant T388 vaccine virus. Since vaccine efficacy depends upon GI replication and the subsequent immune response, the mutation can potentially impact vaccine efficacy.

6.
J Med Virol ; 95(2): e28571, 2023 02.
Article in English | MEDLINE | ID: mdl-36762593

ABSTRACT

Human adenoviruses (HAdV) are genetically diverse and can infect a number of tissues with severities varied from mild to fatal. HAdV types 3, 4, 7, 11, 14, 21, and 55 were associated with acute respiratory illnesses outbreaks in the United States and in other countries. The risk of outbreaks can be effectively controlled by HAdV vaccination or mitigated by screening and preventive measures. During the influenza season 2018-2019, the DoD Global Respiratory Pathogen Surveillance Program (DoDGRS) received 24 300 respiratory specimens. HAdV samples that produced positive cytopathic effects in viral cultivation were subjected to next-generation sequencing for genome sequence assembly, genome typing, whole genome phylogeny, and sequence comparative analyses. A variety of HAdV types were identified in this study, including HAdV types 1-7, 14, 55, and 56. HAdV types 4, 7, and 14 were found in clustered cases in Colorado, Florida, New York, and South Carolina. Comparative sequence analyses of these isolates revealed the emergence of novel genetic mutations despite the stability of adenovirus genomes. Genomic surveillance of HAdV suggested possible undetected outbreaks and shed light on prevalence, genetic divergence, and viral evolution of HAdV. Continued surveillance will inform risk assessment and countermeasures.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Respiratory Tract Infections , Humans , United States , Seasons , Genome, Viral , New York , Phylogeny
7.
PLoS One ; 17(11): e0276729, 2022.
Article in English | MEDLINE | ID: mdl-36342921

ABSTRACT

Combining diagnostic specimens into pools has been considered as a strategy to augment throughput, decrease turnaround time, and leverage resources. This study utilized a multi-parametric approach to assess optimum pool size, impact of automation, and effect of nucleic acid amplification chemistries on the detection of SARS-CoV-2 RNA in pooled samples for surveillance testing on the Hologic Panther Fusion® System. Dorfman pooled testing was conducted with previously tested SARS-CoV-2 nasopharyngeal samples using Hologic's Aptima® and Panther Fusion® SARS-CoV-2 Emergency Use Authorization assays. A manual workflow was used to generate pool sizes of 5:1 (five samples: one positive, four negative) and 10:1. An automated workflow was used to generate pool sizes of 3:1, 4:1, 5:1, 8:1 and 10:1. The impact of pool size, pooling method, and assay chemistry on sensitivity, specificity, and lower limit of detection (LLOD) was evaluated. Both the Hologic Aptima® and Panther Fusion® SARS-CoV-2 assays demonstrated >85% positive percent agreement between neat testing and pool sizes ≤5:1, satisfying FDA recommendation. Discordant results between neat and pooled testing were more frequent for positive samples with CT>35. Fusion® CT (cycle threshold) values for pooled samples increased as expected for pool sizes of 5:1 (CT increase of 1.92-2.41) and 10:1 (CT increase of 3.03-3.29). The Fusion® assay demonstrated lower LLOD than the Aptima® assay for pooled testing (956 vs 1503 cp/mL, pool size of 5:1). Lowering the cut-off threshold of the Aptima® assay from 560 kRLU (manufacturer's setting) to 350 kRLU improved the assay sensitivity to that of the Fusion® assay for pooled testing. Both Hologic's SARS-CoV-2 assays met the FDA recommended guidelines for percent positive agreement (>85%) for pool sizes ≤5:1. Automated pooling increased test throughput and enabled automated sample tracking while requiring less labor. The Fusion® SARS-CoV-2 assay, which demonstrated a lower LLOD, may be more appropriate for surveillance testing.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Automation , Sensitivity and Specificity
8.
J Virol ; 96(2): e0159921, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34705557

ABSTRACT

Live oral vaccines have been explored for their protective efficacy against respiratory viruses, particularly for adenovirus serotypes 4 and 7. The potential of a live oral vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, remains unclear. In this study, we assessed the immunogenicity of live SARS-CoV-2 delivered to the gastrointestinal tract in rhesus macaques and its protective efficacy against intranasal and intratracheal SARS-CoV-2 challenge. Postpyloric administration of SARS-CoV-2 by esophagogastroduodenoscopy resulted in limited virus replication in the gastrointestinal tract and minimal to no induction of mucosal antibody titers in rectal swabs, nasal swabs, and bronchoalveolar lavage fluid. Low levels of serum neutralizing antibodies were induced and correlated with modestly diminished viral loads in nasal swabs and bronchoalveolar lavage fluid following intranasal and intratracheal SARS-CoV-2 challenge. Overall, our data show that postpyloric inoculation of live SARS-CoV-2 is weakly immunogenic and confers partial protection against respiratory SARS-CoV-2 challenge in rhesus macaques. IMPORTANCE SARS-CoV-2 remains a global threat, despite the rapid deployment but limited coverage of multiple vaccines. Alternative vaccine strategies that have favorable manufacturing timelines, greater ease of distribution, and improved coverage may offer significant public health benefits, especially in resource-limited settings. Live oral vaccines have the potential to address some of these limitations; however, no studies have yet been conducted to assess the immunogenicity and protective efficacy of a live oral vaccine against SARS-CoV-2. Here, we report that oral administration of live SARS-CoV-2 in nonhuman primates may offer prophylactic benefits, but the formulation and route of administration will require further optimization.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Administration, Oral , Animals , Female , Macaca mulatta , Male , Vaccine Efficacy
9.
J Med Virol ; 93(7): 4570-4575, 2021 07.
Article in English | MEDLINE | ID: mdl-33830520

ABSTRACT

Inpatient coronavirus disease 2019 (COVID-19) cases present enormous costs to patients and health systems in the United States. Many hospitalized patients may continue testing COVID-19 positive even after the resolution of symptoms. Thus, a pressing concern for clinicians is the safety of discharging these asymptomatic patients if they have any remaining infectivity. This case report explores the viral viability in a patient with persistent COVID-19 over the course of a 2-month hospitalization. Positive nasopharyngeal swab samples were collected and isolated in the laboratory and analyzed by quantitative reverse-transcription polymerase chain reactions (qRT-PCR), and serology was tested for neutralizing antibodies throughout the hospitalization period. The patient experienced waning symptoms by hospital day 40 and had no viable virus growth by hospital day 41, suggesting no risk of infectivity, despite positive RT-PCR results which prolonged his hospital stay. Notably, this case showed infectivity for at least 24 days after disease onset, which is longer than the discontinuation of transmission-based precautions recommended by the Center for Disease Control and Prevention. Thus, our findings suggest that the timeline for discontinuing transmission-based precautions may need to be extended for patients with severe and prolonged COVID-19 disease. Additional large-scale studies are needed to draw definitive conclusions on the appropriate clinical management for these patients. ​.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Virus Shedding/physiology , Aged , Asymptomatic Infections , Humans , Male , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/immunology
10.
Microbiol Resour Announc ; 10(5)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33541877

ABSTRACT

Here, we report two complete genome sequences of human adenovirus 55 (HAdV-55) isolates, from a patient in Pennsylvania in 2006 and a U.S. military member in South Korea in 2019. The findings demonstrate the continued global transmission of HAdV-55 viruses in both military and civilian populations.

11.
Vaccines (Basel) ; 8(3)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32718082

ABSTRACT

Human adenoviruses (AdV) are mostly associated with minimal pathology. However, more severe respiratory tract infections and acute respiratory diseases, most often caused by AdV-4 and AdV-7, have been reported. The only licensed vaccine in the United States, live oral AdV-4 and AdV-7 vaccine, is indicated for use in the military, nearly exclusively in recruit populations. The excellent safety profile and prominent antibody response of the vaccine is well established by placebo-controlled clinical trials, while, long-term immunity of vaccination has not been studied. Serum samples collected over 6 years from subjects co-administered live oral AdV-4 and AdV-7 vaccine in 2011 were evaluated to determine the duration of the antibody response. Group geometric mean titers (GMT) at 6 years post vaccination compared to previous years evaluated were not significantly different for either AdV-4 or AdV-7 vaccine components. There were no subjects that demonstrated waning neutralization antibody (NAb) titers against AdV-4 and less than 5% of subjects against AdV-7. Interestingly, there were subjects that had a four-fold increase in NAb titers against either AdV-4 or AdV-7, at various time points post vaccination, suggesting either homotypic or heterotypic re-exposure. This investigation provided strong evidence that the live oral AdV-4 and AdV-7 vaccine induced long-term immunity to protect from AdV-4 and AdV-7 infections.

12.
Emerg Infect Dis ; 26(7): 1497-1505, 2020 07.
Article in English | MEDLINE | ID: mdl-32568062

ABSTRACT

Human adenovirus type 55 (HAdV-55) causes acute respiratory disease of variable severity and has become an emergent threat in both civilian and military populations. HAdV-55 infection is endemic to China and South Korea, but data from other regions and time periods are needed for comprehensive assessment of HAdV-55 prevalence from a global perspective. In this study, we subjected HAdV-55 isolates from various countries collected during 1969-2018 to whole-genome sequencing, genomic and proteomic comparison, and phylogenetic analyses. The results show worldwide distribution of HAdV-55; recent strains share a high degree of genomic homogeneity. Distinct strains circulated regionally for several years, suggesting persistent local transmission. Several cases of sporadic introduction of certain strains to other countries were documented. Among the identified amino acid mutations distinguishing HAdV-55 strains, some have potential impact on essential viral functions and may affect infectivity and transmission.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Respiratory Tract Infections , Adenovirus Infections, Human/epidemiology , Adenoviruses, Human/genetics , China , DNA, Viral , Humans , Phylogeny , Proteomics , Republic of Korea/epidemiology
13.
Vaccines (Basel) ; 8(2)2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32260110

ABSTRACT

Zika virus (ZIKV) is a mosquito-transmitted positive-sense RNA virus in the family Flaviviridae. Candidate live-attenuated vaccine (LAV) viruses with engineered deletions in the 3' untranslated region (UTR) provide immunity and protection in animal models of ZIKV infection, and phenotypic studies show that LAVs retain protective abilities following in vitro passage. The present study investigated the genetic diversity of wild-type (WT) parent ZIKV and its candidate LAVs using next generation sequencing analysis of five sequential in vitro passages. The results show that genomic entropy of WT ZIKV steadily increases during in vitro passage, whereas that of LAVs also increased by passage number five but was variable throughout passaging. Additionally, clusters of single nucleotide variants (SNVs) were found to be present in the pre-membrane/membrane (prM), envelope (E), nonstructural protein NS1 (NS1), and other nonstructural protein genes, depending on the specific deletion, whereas in the parent WT ZIKV, they are more abundant in prM and NS1. Ultimately, both the parental WT and LAV derivatives increase in genetic diversity, with evidence of adaptation following passage.

14.
Vaccines (Basel) ; 7(3)2019 08 20.
Article in English | MEDLINE | ID: mdl-31434319

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne Flavivirus. Previous studies have shown that mosquito-transmitted flaviviruses, including yellow fever, Japanese encephalitis, and West Nile viruses, could be attenuated by serial passaging in human HeLa cells. Therefore, it was hypothesized that wild-type ZIKV would also be attenuated after HeLa cell passaging. A human isolate from the recent ZIKV epidemic was subjected to serial HeLa cell passaging, resulting in attenuated in vitro replication in both Vero and A549 cells. Additionally, infection of AG129 mice with 10 plaque forming units (pfu) of wild-type ZIKV led to viremia and mortality at 12 days, whereas infection with 103 pfu of HeLa-passage 6 (P6) ZIKV led to lower viremia, significant delay in mortality (median survival: 23 days), and increased cytokine and chemokine responses. Genomic sequencing of HeLa-passaged virus identified two amino acid substitutions as early as HeLa-P3: pre-membrane E87K and nonstructural protein 1 R103K. Furthermore, both substitutions were present in virus harvested from HeLa-P6-infected animal tissue. Together, these data show that, similarly to other mosquito-borne flaviviruses, ZIKV is attenuated following passaging in HeLa cells. This strategy can be used to improve understanding of substitutions that contribute to attenuation of ZIKV and be applied to vaccine development across multiple platforms.

15.
Emerg Microbes Infect ; 8(1): 1126-1138, 2019.
Article in English | MEDLINE | ID: mdl-31355708

ABSTRACT

Zika virus (ZIKV) strains belong to the East African, West African, and Asian/American phylogenetic lineages. RNA viruses, like ZIKV, exist as populations of genetically-related sequences whose heterogeneity may impact viral fitness, evolution, and virulence. Genetic diversity of representative ZIKVs from each lineage was examined using next generation sequencing (NGS) paired with downstream entropy and single nucleotide variant (SNV) analysis. Comparisons showed that inter-lineage diversity was statistically supported, while intra-lineage diversity. Intra-lineage diversity was significant for East but not West Africa strains. Furthermore, intra-lineage diversity for the Asian/American lineage was not supported for human serum isolates; however, a placenta isolate differed significantly. Relative in the pre-membrane/membrane (prM/M) gene of several ZIKV strains. Additionally, the East African lineage contained a greater number of synonymous SNVs, while a greater number of non-synonymous SNVs were identified for American strains. Further, inter-lineage SNVs were dispersed throughout the genome, whereas intra-lineage non-synonymous SNVs for Asian/American strains clustered within prM/M and NS1 gene. This comprehensive analysis of ZIKV genetic diversity provides a repository of SNV positions across lineages. We posit that increased non-synonymous SNV populations and increased relative genetic diversity of the prM/M and NS1 proteins provides more evidence for their role in ZIKV virulence and fitness.


Subject(s)
Genetic Variation , Phylogeography , Zika Virus/classification , Zika Virus/genetics , Adaptation, Biological , Animals , Genetic Fitness , Genomics , High-Throughput Nucleotide Sequencing , Humans , Polymorphism, Single Nucleotide , Zika Virus/isolation & purification
16.
mBio ; 9(5)2018 10 30.
Article in English | MEDLINE | ID: mdl-30377281

ABSTRACT

One paradigm to explain the complexity of viral RNA populations is that the low fidelity of the RNA-dependent RNA polymerase (RdRp) drives high mutation rates and consequently genetic diversity. Like most RNA viruses, wild-type yellow fever virus (YFV) replication is error-prone due to the lack of proofreading by the virus-encoded RdRp. However, there is evidence that replication of the live attenuated YF vaccine virus 17D, derived from wild-type strain Asibi, is less error-prone than wild-type RNA viruses. Recent studies comparing the genetic diversity of wild-type Asibi and 17D vaccine virus found that wild-type Asibi has the typical heterogeneous population of an RNA virus, while there is limited intra- and interpopulation variability of 17D vaccine virus. Utilizing chimeric and mutant infectious clone-derived viruses, we show that high and low genetic diversity profiles of wild-type Asibi virus and vaccine virus 17D, respectively, are multigenic. Introduction of either structural (pre-membrane and envelope) genes or NS2B or NS4B substitutions into the Asibi and 17D backbone resulted in altered variant population, nucleotide diversity, and mutation frequency compared to the parental viruses. Additionally, changes in genetic diversity of the chimeric and mutant viruses correlated with the phenotype of multiplication kinetics in human alveolar A549 cells. Overall, the paradigm that only the error-prone RdRp controls genetic diversity needs to be expanded to address the role of other genes in genetic diversity, and we hypothesize that it is the replication complex as a whole and not the RdRp alone that controls genetic diversity.IMPORTANCE With the advent of advanced sequencing technology, studies of RNA viruses have shown that genetic diversity can contribute to both attenuation and virulence and the paradigm is that this is controlled by the error-prone RNA-dependent RNA polymerase (RdRp). Since wild-type yellow fever virus (YFV) strain Asibi has genetic diversity typical of a wild-type RNA virus, while 17D virus vaccine has limited diversity, it provides a unique opportunity to investigate RNA population theory in the context of a well-characterized live attenuated vaccine. Utilizing infectious clone-derived viruses, we show that genetic diversity of RNA viruses is complex and that multiple genes, including structural genes and NS2B and NS4B genes also contribute to genetic diversity. We suggest that the replication complex as a whole, rather than only RdRp, drives genetic diversity, at least for YFV.


Subject(s)
Genetic Variation , Viral Nonstructural Proteins/genetics , Viral Structural Proteins/genetics , Yellow fever virus/genetics , A549 Cells , Humans , Mutation Rate , Recombination, Genetic , Reverse Genetics
17.
Curr Infect Dis Rep ; 19(3): 14, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28275932

ABSTRACT

PURPOSE OF REVIEW: Live attenuated 17D vaccine is considered one of the safest and efficacious vaccines developed to date. This review highlights what is known and the gaps in knowledge of vaccine-induced protective immunity. RECENT FINDINGS: Recently, the World Health Organization modifying its guidance from 10-year booster doses to one dose gives lifelong protection in most populations. Nonetheless, there are some data suggesting immunity, though protective, may wane over time in certain populations and more research is needed to address this question. Despite having an effective vaccine to control yellow fever, vaccine shortages were identified during outbreaks in 2016, eventuating the use of a fractional-dosing campaign in the Democratic Republic of the Congo. Limited studies hinder identification of the underlying mechanism(s) of vaccine longevity; however, concurrent outbreaks during 2016 provide an opportunity to evaluate vaccine immunity following fractional dosing and insights into vaccine longevity in populations where there is limited information.

SELECTION OF CITATIONS
SEARCH DETAIL
...