Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 269
Filter
1.
Appl Radiat Isot ; 205: 111171, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38181577

ABSTRACT

Absolute gamma-ray emission intensities for 36 characteristic gamma rays from the decay of 224Ra, 212Pb, and their progeny were determined by measuring sources calibrated for activity by means of primary methods based on well-defined high-purity germanium (HPGe) detectors at both NIST and NPL. Results from the two laboratories agree with recent data evaluations, except for gamma rays with low emission intensities. The decay schemes have been re-balanced based on the new results. In addition, the half-life for 212Pb was measured using several HPGe detectors, ionization chambers, and a well-type NaI(Tl) detector.

2.
Appl Radiat Isot ; 202: 111044, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37797447

ABSTRACT

Terbium-152 is one of four terbium radioisotopes that together form a potential theranostic toolbox for the personalised treatment of tumours. As 152 Tb decay by positron emission it can be utilised for diagnostics by positron emission tomography. For use in radiopharmaceuticals and for activity measurements by an activity calibrator a high radionuclide purity of the material and an accurate and precise knowledge of the half-life is required. Mass-separation and radiochemical purification provide a production route of high purity 152Tb. In the current work, two mass-separated samples from the CERN-ISOLDE facility have been assayed at the National Physical Laboratory to investigate the radionuclide purity. These samples have been used to perform four measurements of the half-life by three independent techniques: high-purity germanium gamma-ray spectrometry, ionisation chamber measurements and liquid scintillation counting. From the four measurement campaigns a half-life of 17.8784(95) h has been determined. The reported half-life shows a significant difference to the currently evaluated half-life (ζ-score = 3.77), with a relative difference of 2.2 % and an order of magnitude improvement in the precision. This work also shows that under controlled conditions the combination of mass-separation and radiochemical separation can provide high-purity 152Tb.

3.
Appl Radiat Isot ; 197: 110828, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37126950

ABSTRACT

A 100-nm-thick gadolinium layer deposited on a pixelated silicon sensor was activated in a neutron field to measure the internal conversion electron (ICE) spectrum generated by neutron capture products of 155Gd and 157Gd. The experiment was performed at the ISIS neutron and muon facility, using a bespoke version of the HEXITEC spectroscopic imaging camera. Signals originating from internal conversion electrons, Auger electrons, x rays and gamma rays up to 150 keV were identified. The ICE spectrum has an energy resolution of 1.8-1.9 keV at 72 keV and shows peaks from the K, L, M, N+ ICEs of the 79.51 keV and 88.967 keV 2+-0+ gamma transitions from the first excited states in 158Gd and 156Gd, respectively, as well as the K ICEs of the 4+-2+ transitions at 181.931 keV and 199.213 keV from the respective second excited states. Spectrum analysis was performed using a convolution of a Gaussian with exponential functions at the low and high energy side as the peak shaping function. Relative ICE intensities were derived from the fitted peak areas and compared with internal conversion coefficient (ICC) values calculated from the BrIcc database. Relative to the dominant L shell contribution, the K ICE intensity conforms to BrIcc and the M, N, O+ ICE intensities are somewhat higher than expected.

4.
Appl Radiat Isot ; 190: 110480, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36209648

ABSTRACT

Terbium-155 has been identified for its potential for single-photon emission computed tomography (SPECT) in nuclear medicine. For activity measurements, an accurate and precise half-life of this radionuclide is required. However, the currently evaluated half-life of 5.32(6) d with a relative standard uncertainty of 1.1% determines the precision possible. Limited literature for the half-life measurements of this radionuclide is available and all reported investigations are prior to 1970. Further measurements are therefore needed to confirm the accuracy and improve the precision of the half-life for its use in the clinical setting. Two samples produced and mass separated at the CERN-MEDICIS facility have been measured at the National Physical Laboratory by two independent techniques: liquid scintillation counting and high-purity germanium gamma-ray spectrometry. A half-life of 5.2346(36) d has been determined from the weighted mean of the half-lives determined by the two techniques. The half-life reported in this work has shown a relative difference of 1.6% to the currently evaluated half-life and has vastly improved the precision.


Subject(s)
Nuclear Medicine , Radioisotopes , Half-Life , Radioisotopes/analysis , Tomography, Emission-Computed, Single-Photon/methods , Spectrometry, Gamma
5.
Appl Radiat Isot ; 182: 110140, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35158282

ABSTRACT

There is significant interest in the use of terbium radioisotopes for applications in cancer therapy and diagnosis. Of these, 161Tb, as a medium energy beta-emitter, is being investigated as a potential alternative to 177Lu. The relatively high proportion of conversion electron and Auger electron emissions per decay make 161Tb an attractive targeted therapeutic. As a product of nuclear fission, 161Tb is also of importance to nuclear forensics. The standard uncertainty of the current evaluated half-life of 6.89(2) d contributes significantly to the standard uncertainty of any decay corrected activity determination made. Furthermore, the accuracy of this evaluated half-life has been called into question by measurements reported in 2020 at the Institute of Radiation Physics (IRA), Switzerland, who reported a half-life of 6.953(2) d. In the current work, the half-life of the 161Tb ground state decay has been measured at three independent laboratories located in the United Kingdom and the United States of America for a total of six determinations using three independent measurement techniques; gamma-ray spectrometry, ionisation chamber measurement and liquid scintillation counting. The half-life determined for 161Tb of 6.9637(29) d confirms the observed 1% relative increase observed by IRA, though the reported half-lives in this work and at IRA are significantly different (ζ-score = 3.1).


Subject(s)
Half-Life , Radioisotopes/chemistry , Terbium/chemistry , Radiopharmaceuticals/chemistry
6.
J Can Assoc Gastroenterol ; 4(5): 214-221, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34617003

ABSTRACT

BACKGROUND: Corticosteroids (CS) have been used extensively to induce remission in Crohn's disease (CD); however, they are associated with severe side effects. We hypothesized that the administration of an exclusive enteral nutrition (EEN) formula to CS would lead to increased CD remission rates and to decreased CS-related adverse events. We proposed to undertake a pilot study comparing EEN and CS therapy to CS alone to assess decrease symptoms and inflammatory markers over 6 weeks. AIM: The overall aim was to assess study feasibility based on recruitment rates and acceptability of treatment in arms involving EEN. METHODS: The pilot study intended to recruit 100 adult patients with active CD who had been prescribed CS to induce remission as part of their care. The patients were randomized to one of three arms: (i) standard-dose CS; (ii) standard-dose CS plus EEN (Modulen 1.5 kcal); or (iii) short-course CS plus EEN. RESULTS: A total of 2009 CD patients attending gastroenterology clinics were screened from October 2018 to November 2019. Prednisone was prescribed to only 6.8% (27/399) of patients with active CD attending outpatient clinics. Of the remaining 372 patients with active CD, 34.8% (139/399) started or escalated immunosuppressant or biologics, 49.6% (198/399) underwent further investigation and 8.8% (35/399) were offered an alternative treatment (e.g., antibiotics, surgery or investigational agents in clinical trials). Only three patients were enrolled in the study (recruitment rate 11%; 3/27), and the study was terminated for poor recruitment. CONCLUSION: The apparent decline in use of CS for treatment of CD has implications for CS use as an entry criterion for clinical trials.

7.
Anal Chim Acta ; 1141: 221-229, 2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33248656

ABSTRACT

Accurate measurement of naturally occurring radionuclides in blast furnace slag, a by-product of the steel industry, is required for compliance with building regulations where it is often used as an ingredient in cement. A matrix reference blast furnace slag material has been developed to support traceability in these measurements. Raw material provided by a commercial producer underwent stability and homogeneity testing, as well as characterisation of matrix constituents, to provide a final candidate reference material. The radionuclide content was then determined during a comparison exercise that included 23 laboratories from 14 countries. Participants determined the activity per unit mass for 226Ra, 232Th and 40K using a range of techniques. The consensus values obtained from the power-moderated mean of the reported participant results were used as indicative activity per unit mass values for the three radionuclides: A0(226Ra) = 106.3 (34) Bq·kg-1, A0(232Th) = 130.0 (48) Bq·kg-1 and A0(40K) = 161 (11) Bq·kg-1 (where the number in parentheses is the numerical value of the combined standard uncertainty referred to the corresponding last digits of the quoted result). This exercise helps to address the current shortage of NORM industry reference materials, putting in place infrastructure for production of further reference materials.

8.
Appl Radiat Isot ; 157: 109021, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31889679

ABSTRACT

High-energy tailing is an often-overlooked component in high-purity germanium gamma-ray spectrometry when performing the non-linear least squares fit of a full-energy peak. This component comes from the incomplete restoration of the baseline prior to the next pulse being processed and therefore is an issue of increased count rates. In the current work, the impact of this oversight is shown through the dynamics and decay characteristics of 224Ra and its radioactive decay progeny. Multiple measurements of two samples, separated from the decay progeny and at differing activities, have been made. The results of full-energy peak fitting of the convoluted 238.6 keV and 241.0 keV full-energy peaks with and without the high energy tailing component are presented. Trends in the observed activity that approximate the ingrowth of 212Pb have been observed where no high-energy tailing component is used, with maximum relative differences of 2% and 5% determined.

9.
Appl Radiat Isot ; 155: 108920, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31622844

ABSTRACT

The probabilities of locating peaks with a high relative peak-area uncertainty were determined empirically with nine types of peak-location software used in laboratories engaged in gamma-ray spectrometry measurements. It was found that it is not possible to locate peaks with a probability of 0.95, when they have a relative peak-area uncertainty in excess of 50%. Locating peaks at these relatively high peak-area uncertainties with a probability greater than 0.95 is only possible in the library-driven mode, where the peak positions are supposed a-priori. The deficiencies of the library-driven mode and the possibilities to improve the probabilities of locating peaks are briefly discussed.

10.
Appl Radiat Isot ; 153: 108826, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31525708

ABSTRACT

Holmium-166 is a high-energy ß--emitter radionuclide (~ 1.8 MeV) with a short half-life (~26.8h) that offers great potential as an alternative to 90Y for the treatment of liver cancer based on radioembolization. The possibility of quantitative Single Photon Emission Computed Tomography (SPECT) imaging of the main γ-ray emission at 80.6 keV, in addition to strong paramagnetic properties suitable for Magnetic Resonance Imaging (MRI), complement this therapeutic potential. The present paper describes the measurements carried out in three European radionuclide metrology laboratories for primary standardization of 166Ho and new determinations of X- and γ-ray photon-emission intensities in the framework of the European EMPIR project MRTDosimetry. New half-life measurements were also performed.


Subject(s)
Holmium/analysis , Radiation Dosage , Radioisotopes/analysis , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/radiotherapy , Tomography, Emission-Computed, Single-Photon
11.
Appl Radiat Isot ; 145: 251-257, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30686576

ABSTRACT

At the time of publication, radiopharmaceuticals labelled with thorium-227 are in clinical trials in Europe for the treatment of various types of cancer. In part I of this two-part series the primary standardisation of an aqueous solution of 227Th was reported. In part II, the activity derived from the recommended absolute γ-ray emission intensities have been compared to that from the primary standardisation techniques. This comparison showed a negative bias of 4% in the determined activity per unit mass with an 11% spread in the activities determined for the eight most intense γ-ray emissions (Iγ > 1%) from the 227Th α decay. Using the standardised 227Th, measurements of the characteristic γ-ray emissions from the 223Ra excited states were made using a calibrated HPGe γ-ray spectrometer. This has enabled the absolute intensities of 70 γ ray emissions from the 227Th α-decay to be experimentally determined. A significant improvement over the precision of the recommended normalisation scaling factor has been made, with a value of 12.470 (35) % determined. Typically, the precision of the intensities has been improved by an order of magnitude or greater than current recommended values. The correlation matrices for pairs of the most intense γ-ray emission intensities are presented.


Subject(s)
Radiopharmaceuticals/therapeutic use , Thorium/therapeutic use , Alpha Particles/therapeutic use , Calibration , Gamma Rays/therapeutic use , Humans , Neoplasms/radiotherapy , Radioimmunotherapy/methods , Radioimmunotherapy/standards , Radiopharmaceuticals/standards , Radium/chemistry , Reference Standards , Scintillation Counting , Spectrometry, Gamma , Thorium/standards
12.
Appl Radiat Isot ; 145: 240-250, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30583971

ABSTRACT

Thorium-227 is a potential therapeutic radionuclide for applications in targeted α-radioimmunotherapy for the treatment of various types of cancer. To provide nuclear medicine departments involved in Phase I clinical trials traceability to the SI unit of radioactivity (Bq), a standardisation of a radiochemically pure 227Th aqueous solution has been performed at the National Physical Laboratory. This was achieved via two primary liquid scintillation (LS) techniques -4π(LS)-γ digital coincidence counting (DCC) and 4π LS counting. These absolute techniques were supported by the indirect determination of the 227Th activity via the measurement of the ingrowth and decay rate of the decay progeny by both ionisations chambers and high purity germanium (HPGe) gamma-ray spectrometry. The results of the primary techniques were found to be consistent, both with each other (zeta score = 1.1) and to the decay progeny ingrowth measurements. An activity per unit mass of 20.726 (51) kBq g-1 was determined for the solution. A procedure has been developed that provided an effective separation of the 227Th from its decay progeny, which was shown by the effective time zero of the 227Th-223Ra nuclear chronometer measured by HPGe gamma-ray spectrometry.


Subject(s)
Radiopharmaceuticals/standards , Thorium/standards , Alpha Particles/therapeutic use , Germanium , Half-Life , Humans , Neoplasms/radiotherapy , Radioimmunotherapy/methods , Radioimmunotherapy/standards , Radiometry/instrumentation , Radiopharmaceuticals/analysis , Radiopharmaceuticals/therapeutic use , Reference Standards , Scintillation Counting/methods , Spectrometry, Gamma , Thorium/analysis , Thorium/therapeutic use
13.
Appl Radiat Isot ; 134: 18-22, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28823475

ABSTRACT

Protactinium-231 is one of the lesser known actinides, yet the measurement of this radionuclide is central to dating studies in both paleoclimate and nuclear forensics measurements; furthermore, it is important as the immediate parent nuclide of the 227Ac decay chain. In this paper, we present the preparatory work for an upcoming CCRI(II) supplementary comparison of this radionuclide. The material used in this work was of poorly known provenance, and it was necessary to carry out a chemical purification of this material prior to use. A new extraction chromatography resin, TK 400, which has been developed for the separation of 231Pa, was tested at NPL. The aims of the work were achieved; the recovery of 231Pa was ~85%, the decay products were recovered in good yield (~95%) and stable element impurities were removed.

14.
Appl Radiat Isot ; 134: 51-55, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28673731

ABSTRACT

A method is presented for calculating the expected number of counts in peaks that have a large relative peak-area uncertainty and appear in measured gamma-ray spectra. The method was applied to calculations of the correction factors for peaks occurring in the spectra of radon daughters. It was shown that the factors used for correcting the calculated peak areas to their expected values decrease with an increasing relative peak-area uncertainty. The accuracy of taking the systematic influence inducing the correction factors into account is given by the dispersion of the correction factors corresponding to specific peaks. It was shown that the highest accuracy is obtained in the peak analyses with the GammaVision and Gamma-W software.

15.
Appl Radiat Isot ; 138: 65-72, 2018 Aug.
Article in English | MEDLINE | ID: mdl-28427834

ABSTRACT

Using tailor-made sub-mm dimension doped-silica fibres, thermoluminescent dosimetric studies have been performed for α-emitting sources of 223RaCl2 (the basis of the Bayer Healthcare product Xofigo®). The use of 223RaCl2 in the palliative treatment of bone metastases resulting from late-stage castration-resistant prostate cancer focuses on its favourable uptake in metabolically active bone metastases. Such treatment benefits from the high linear energy transfer (LET) and associated short path length (<100µm) of the α-particles emitted by 223Ra and its decay progeny. In seeking to provide for in vitro dosimetry of the α-particles originating from the 223Ra decay series, investigation has been made of the TL yield of various forms of Ge-doped SiO2 fibres, including photonic crystal fibre (PCF) collapsed, PCF uncollapsed, flat and single-mode fibres. Irradiations of the fibres were performed at the UK National Physical Laboratory (NPL). Notable features are the considerable sensitivity of the dosimeters and an effective atomic number Zeff approaching that of bone, the glass fibres offering the added advantage of being able to be placed directly into liquid. The outcome of present research is expected to inform development of doped fibre dosimeters of versatile utility, including for applications as detailed herein.

16.
Appl Radiat Isot ; 134: 290-296, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28843735

ABSTRACT

The National Physical Laboratory has recently been in the process of commissioning a multi-detector γ ray array - the National Nuclear Array (NANA). In this study we have sought to exploit the NANA and the excellent timing characteristics of its intrinsic LaBr3(Ce) scintillation detectors for use as a primary standardisation system. For this initial investigation, the absolute standardisation of 60Co has been performed by the γ-γ coincidence technique using NANA and the result compared to the established 4π(LS)-γ Digital Coincidence Counting (DCC) system. The effect of the angular correlation of the stretched E2 transitions emitted from the 4+→2+→0 states of 60Ni on the activity determined by NANA was observed between the pairs of detectors. Corrections for these angular correlations were derived through Monte Carlo simulations. An activity per unit mass by NANA of 330.8 (10) kBqg-1 for the 60Co solution was determined. There was no significant statistical difference between the results of NANA and the 4π(LS)-γ DCC, with a relative difference of 0.04% observed. This study shows that NANA can be used as a primary standard.

17.
Phys Rev Lett ; 119(16): 166101, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-29099194

ABSTRACT

Electron tomography bears promise for widespread determination of the three-dimensional arrangement of atoms in solids. However, it remains unclear whether methods successful for crystals are optimal for amorphous solids. Here, we explore the relative difficulty encountered in atomic-resolution tomography of crystalline and amorphous nanoparticles. We define an informational entropy to reveal the inherent importance of low-entropy zone-axis projections in the reconstruction of crystals. In turn, we propose considerations for optimal sampling for tomography of ordered and disordered materials.

18.
Appl Radiat Isot ; 124: 100-105, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28363158

ABSTRACT

Thorium-227 is currently undergoing evaluation as a potential radionuclide for targeted cancer therapy, and as such a high chemical purity of the material is required. To establish a reliable procedure for radiochemical isolation of 227Th from the parent 227Ac and decay progeny, which includes the radiotherapeutic 223Ra, the performance of three different separation schemes based on ion-exchange and extraction chromatography have been evaluated. The results suggest that both ion exchange and extraction chromatographic techniques can be successfully used for the separation of 227Th from its decay progeny, however extraction chromatographic resins demonstrate favourable performance in terms of Th recovery and purification from radionuclide impurities.


Subject(s)
Chromatography, Ion Exchange/methods , Radiopharmaceuticals/isolation & purification , Thorium/isolation & purification , Actinium/isolation & purification , Alpha Particles , Germanium , Humans , Ion Exchange Resins , Radon Daughters/isolation & purification , Spectrometry, Gamma , Spectrophotometry, Atomic
20.
Int Rev Neurobiol ; 131: 247-261, 2016.
Article in English | MEDLINE | ID: mdl-27793222

ABSTRACT

The irritable bowel syndrome (IBS) is a chronic abdominal symptom complex occurring in a bowel devoid of discernible relevant pathology. There is growing interest in the role of the intestinal microbiota as a basis for the intestinal and possibly behavioral manifestations of this condition. Molecular-based microbial profiling has revealed compositional changes in the microbiota of at least a subset of IBS patients but the data are often conflicting and no microbial signature for this condition has yet been defined. Animal studies in which a previously stable intestinal microbiota is perturbed, by antibiotics or dietary change, results in alterations in intestinal function reminiscent of that seen in IBS patients. These include visceral sensitivity to painful stimuli, altered motility and intestinal barrier function as well as immune activation, and low-grade inflammation. More recent studies have shown that perturbation of the microbial composition of the gut alters brain chemistry and behavior. In a step toward establishing a causal link between an altar microbiota and gut-brain manifestations of IBS, colonization of germ-free mice with microbiota from IBS patients results in an IBS-like phenotype, including alterations and behavior if the donor exhibited psychiatric comorbidity, such as high levels of anxiety. This model provides an opportunity for exploring the mechanisms underlying host-microbe interactions relevant to the pathogenesis of IBS and for developing novel therapeutic targets.


Subject(s)
Gastrointestinal Microbiome/physiology , Irritable Bowel Syndrome/microbiology , Irritable Bowel Syndrome/pathology , Animals , Brain/physiopathology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...