Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 132(4): 787-800, 2023 11 25.
Article in English | MEDLINE | ID: mdl-37777476

ABSTRACT

BACKGROUND AND AIMS: Epiphytism has evolved repeatedly in plants and has resulted in a considerable number of species with original characteristics. Because water supply is generally erratic compared to that in soils, succulent forms in particular are widespread in epiphytic species. However, succulent organs also exist in terrestrial plants, and the question of the concomitant evolution of epiphytism and succulence has received little attention, not even in the epidendroid orchids, which account for 67.6 % of vascular epiphytes. METHODS: We built a new time-calibrated phylogenetic tree of Epidendroideae with 203 genera treated in genus Orchidacearum, from which we reconstructed the evolution of epiphytism as well as traits related to water scarcity (stem and leaf succulence and the number of velamen layers), while testing for the correlated evolution between the two. Furthermore, we estimated the ancestral geographical ranges to evaluate the palaeoclimatic context in which epiphytism evolved. KEY RESULTS: Epiphytism evolved at least three times: 39.0 million years ago (Mya) in the common ancestor of the Malaxideae and Cymbidieae that probably ranged from the Neotropics to Southeast Asia and Australia, 11.5 Mya in the Arethuseae in Southeast Asia and Australia, and 7.1 Mya in the neotropical Sobralieae, and it was notably lost in the Malaxidiinae, Collabieae, Calypsoeae, Bletiinae and Eulophiinae. Stem succulence is inferred to have evolved once, in a terrestrial ancestor at least 4.1 Mya before the emergence of epiphytic lineages. If lost, stem succulence was almost systematically replaced by leaf succulence in epiphytic lineages. CONCLUSIONS: Epiphytism may have evolved in seasonally dry forests during the Eocene climatic cooling, among stem-succulent terrestrial orchids. Our results suggest that the emergence of stem succulence in early epidendroids was a key innovation in the evolution of epiphytism, facilitating the colonization of epiphytic environments that later led to the greatest diversification of epiphytic orchids.


Subject(s)
Orchidaceae , Soil , Phylogeny , Phenotype , Forests
2.
Mol Phylogenet Evol ; 159: 107105, 2021 06.
Article in English | MEDLINE | ID: mdl-33601026

ABSTRACT

Angraecoid orchids present a remarkable diversity of chromosome numbers, which makes them a highly suitable system for exploring the impact of karyotypic changes on cladogenesis, diversification and morphological differentiation. We compiled an annotated cytotaxonomic checklist for 126 species of Angraecinae, which was utilised to reconstruct chromosomal evolution using a newly-produced, near-comprehensive phylogenetic tree that includes 245 angraecoid taxa. In tandem with this improved phylogenetic framework, using combined Bayesian, maximum likelihood and parsimony approaches on ITS-1 and five plastid markers, we propose a new cladistic nomenclature for the angraecoids, and we estimate a new timeframe for angraecoid radiation based on a secondary calibration, and calculate diversification rates using a Bayesian approach. Coincident divergence dates between clades with identical geographical distributions in the angraecoids and the pantropical orchid genus Bulbophyllum suggest that the same events may have intervened in the dispersal of these two epiphytic groups between Asia, continental Africa, Madagascar and the Neotropics. The major angraecoid lineages probably began to differentiate in the Middle Miocene, and most genera and species emerged respectively around the Late Miocene-Pliocene boundary and the Pleistocene. Ancestral state reconstruction using maximum likelihood estimation revealed an eventful karyotypic history dominated by descending dysploidy. Karyotypic shifts seem to have paralleled cladogenesis in continental tropical Africa, where approximately 90% of the species have descended from at least one inferred transition from n = 17-18 to n = 25 during the Middle Miocene Climatic Transition, followed by some clade-specific descending and ascending dysploidy from the Late Miocene to the Pleistocene. Conversely, detected polyploidy is restricted to a few species lineages mostly originating during the Pleistocene. No increases in net diversification could be related to chromosome number changes, and the apparent net diversification was found to be highest in Madagascar, where karyotypic stasis predominates. Finally, shifts in chromosome number appear to have paralleled the evolution of rostellum structure, leaflessness, and conspicuous changes in floral colour.


Subject(s)
Biological Evolution , Genetic Speciation , Karyotype , Orchidaceae/classification , Phylogeny , Africa , Asia , Bayes Theorem , Likelihood Functions , Madagascar , Orchidaceae/genetics , Phylogeography , Plastids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...